This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the op...This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates.展开更多
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ...In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.展开更多
This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are est...This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are established.Then,we obtain the L^(p),2≤p≤+∞decay rate of solutions.The approach is based on detailed analysis of the Green function of the linearized equation with the technique of long wave-short wave decomposition and the Fourier analysis.展开更多
文摘This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates.
文摘In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.
基金supported by the Science and Technology Research Program of Chongqing Municipal Educaton Commission(Grant No.KJQN201900543)the Natural Science Foundation of Chongqing(Grant No.cstc2020jcyj-msxm X0709,Grant No.cstc2020jcyj-jq X0022)the Natural Science Foundation of China(Grant No.12001073)。
文摘This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are established.Then,we obtain the L^(p),2≤p≤+∞decay rate of solutions.The approach is based on detailed analysis of the Green function of the linearized equation with the technique of long wave-short wave decomposition and the Fourier analysis.