This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u...This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.展开更多
By using observation and sounding data at 68 artificial observatories of Jiangsu Province during 2009- 2013,thunderstorm gale weather and its climatic characteristics in Jiangsu were conducted statistics. The characte...By using observation and sounding data at 68 artificial observatories of Jiangsu Province during 2009- 2013,thunderstorm gale weather and its climatic characteristics in Jiangsu were conducted statistics. The characteristics of some instability indexes and strong convection parameters were analyzed,and environmental parameters of dry and wet thunderstorm gales were contrasted. Results showed that thunderstorm gale in Jiangsu had the characteristics of high occurrence frequency,local feature and stronger intensity. It was mostly accompanied by precipitation,and had obvious seasonal and daily change characteristics. Synoptics analysis showed that temperature-humidity profile characteristics before thunderstorm gale appeared in Jiangsu mainly had four types: bell mouth type,inverted V type,dry unstable type and wet unstable type. Before thunderstorm gale occurred,atmospheric instability was stronger,and some strong convection parameters all had certain instructions. But the forecasts of some thunderstorm gale processes were easy to be missed by only considering CAPE. Environmental condition difference of generating dry and wet thunderstorm gale was that instability of dry thunderstorm gale was stronger than that of wet thunderstorm gale. Before dry thunderstorm gale occurred,environmental temperature at middle-low layer was lower; lapse rate was larger; humidity was small. Before wet thunderstorm gale occurred,environmental temperature was higher; lapse rate was small; humidity was large. At dynamic structure,vertical wind shear at 0- 6 km of dry thunderstorm gale was significantly stronger than that of wet thunderstorm gale.展开更多
Three storm automatic identification algorithms for Doppler radar are discussed. The WSR-88D Build 7.0 (B7SI) tests the intensity and continuity of the objective echoes by multiple-prescribed thresholds to build 3D ...Three storm automatic identification algorithms for Doppler radar are discussed. The WSR-88D Build 7.0 (B7SI) tests the intensity and continuity of the objective echoes by multiple-prescribed thresholds to build 3D storms, and when storms are merging, splitting, or clustered closely, the detection errors become larger. The B9SI algorithm is part of the Build 9.0 Radar Products Generator of the WSR-88D system. It uses multiple thresholds of reflectivity, newly designs the techniques of cell nucleus extraction and closestorms processing, and therefore is capable of identifying embedded cells in multi-cellular storms. The strong area components at a long distance are saved as 2D storms. However, the B9SI cannot give information on the convection strength of storm, because texture and gradient of reflectivity are not calculated and radial velocity data are not used. To overcome this limitation, the CSI (Convective Storm Identification) algorithm is designed in this paper. By using the fuzzy logic technique, and under the condition that the levels of the seven reflectivity thresholds of B9SI are lowered, the CSI processes the radar base data and the output of B9SI to obtain the convection index of storm. Finally, the CSI is verified with the case of a supercell occurring in Guangzhou on 11 August 2004. The computational and analysis results show that the two rises of convection index matched well with a merging growth and strong convergent growth of the supercell, and the index was 0.744 when the supercell was the strongest, and then decreased. Correspondingly, the height of the maximum reflectivity, detected by the radar also reduced, and heavy rain also occurred in a large-scale area.展开更多
文摘This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.
基金Supported by Special Project of Jiangsu Forecaster,China(JSYBY201314)
文摘By using observation and sounding data at 68 artificial observatories of Jiangsu Province during 2009- 2013,thunderstorm gale weather and its climatic characteristics in Jiangsu were conducted statistics. The characteristics of some instability indexes and strong convection parameters were analyzed,and environmental parameters of dry and wet thunderstorm gales were contrasted. Results showed that thunderstorm gale in Jiangsu had the characteristics of high occurrence frequency,local feature and stronger intensity. It was mostly accompanied by precipitation,and had obvious seasonal and daily change characteristics. Synoptics analysis showed that temperature-humidity profile characteristics before thunderstorm gale appeared in Jiangsu mainly had four types: bell mouth type,inverted V type,dry unstable type and wet unstable type. Before thunderstorm gale occurred,atmospheric instability was stronger,and some strong convection parameters all had certain instructions. But the forecasts of some thunderstorm gale processes were easy to be missed by only considering CAPE. Environmental condition difference of generating dry and wet thunderstorm gale was that instability of dry thunderstorm gale was stronger than that of wet thunderstorm gale. Before dry thunderstorm gale occurred,environmental temperature at middle-low layer was lower; lapse rate was larger; humidity was small. Before wet thunderstorm gale occurred,environmental temperature was higher; lapse rate was small; humidity was large. At dynamic structure,vertical wind shear at 0- 6 km of dry thunderstorm gale was significantly stronger than that of wet thunderstorm gale.
基金the Guangdong Natural Science Foundation under Grant No.5001121the Guangzhou Municipal Science and Technology Program(06A13043333).
文摘Three storm automatic identification algorithms for Doppler radar are discussed. The WSR-88D Build 7.0 (B7SI) tests the intensity and continuity of the objective echoes by multiple-prescribed thresholds to build 3D storms, and when storms are merging, splitting, or clustered closely, the detection errors become larger. The B9SI algorithm is part of the Build 9.0 Radar Products Generator of the WSR-88D system. It uses multiple thresholds of reflectivity, newly designs the techniques of cell nucleus extraction and closestorms processing, and therefore is capable of identifying embedded cells in multi-cellular storms. The strong area components at a long distance are saved as 2D storms. However, the B9SI cannot give information on the convection strength of storm, because texture and gradient of reflectivity are not calculated and radial velocity data are not used. To overcome this limitation, the CSI (Convective Storm Identification) algorithm is designed in this paper. By using the fuzzy logic technique, and under the condition that the levels of the seven reflectivity thresholds of B9SI are lowered, the CSI processes the radar base data and the output of B9SI to obtain the convection index of storm. Finally, the CSI is verified with the case of a supercell occurring in Guangzhou on 11 August 2004. The computational and analysis results show that the two rises of convection index matched well with a merging growth and strong convergent growth of the supercell, and the index was 0.744 when the supercell was the strongest, and then decreased. Correspondingly, the height of the maximum reflectivity, detected by the radar also reduced, and heavy rain also occurred in a large-scale area.