As a nonlinear,strong coupling and multi-variable system,the drive performance of bearingless switched reluctance motor(BLSRM)is always limited by its complicated electromagnetic properties.Generally,conventional PID ...As a nonlinear,strong coupling and multi-variable system,the drive performance of bearingless switched reluctance motor(BLSRM)is always limited by its complicated electromagnetic properties.Generally,conventional PID methods are used to achieve the basic control requirement in wide industrial applications,however its inherent operating principle limits its use on suspending control of BLSRM.In this paper,the suspending force system,which is separately controlled from torque system,is built based on an adaptive fuzzy PID controller to limit the rotor eccentric displacement with proper generation of radial force.When compared with a system adopted using conventional PID method for suspending force control,the proposed adaptive fuzzy PID method has superior performance in shortening the response time,reducing the maximum eccentric displacement error and higher speed range of operation due to its online self-turning of controller parameters.Both in simulation and experimental cases,comparison of results of the above two methods validates the effectiveness of the adaptive fuzzy PID controller for BLSRM drive system.展开更多
文摘As a nonlinear,strong coupling and multi-variable system,the drive performance of bearingless switched reluctance motor(BLSRM)is always limited by its complicated electromagnetic properties.Generally,conventional PID methods are used to achieve the basic control requirement in wide industrial applications,however its inherent operating principle limits its use on suspending control of BLSRM.In this paper,the suspending force system,which is separately controlled from torque system,is built based on an adaptive fuzzy PID controller to limit the rotor eccentric displacement with proper generation of radial force.When compared with a system adopted using conventional PID method for suspending force control,the proposed adaptive fuzzy PID method has superior performance in shortening the response time,reducing the maximum eccentric displacement error and higher speed range of operation due to its online self-turning of controller parameters.Both in simulation and experimental cases,comparison of results of the above two methods validates the effectiveness of the adaptive fuzzy PID controller for BLSRM drive system.