期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE OPTIMAL CONVERGENCE ORDER OF THE DISCONTINUOUS FINITE ELEMENT METHODS FOR FIRST ORDER HYPERBOLIC SYSTEMS
1
作者 Tie Zhang Datao Shi Zhen Li 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第5期689-701,共13页
In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and th... In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and the O(h^2)-order optimal error estimates are derived under the assumption of strongly regular triangulation and the Ha-regularity for the exact solutions. The convergence analysis is based on some superclose estimates of the interpolation approximation. Finally, we discuss the Maxwell equations in a two-dimensional domain, and numerical experiments are given to validate the theoretical results. 展开更多
关键词 First order hyperbolic systems Discontinuous finite element method convergence order estimate.
原文传递
A Second Order Nonconforming Rectangular Finite Element Method for Approximating Maxwell's Equations 被引量:1
2
作者 Dong-yang SHI Xiao-bin HAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期739-748,共10页
Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the correspondin... Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h^3), properly one order higher than that of its interpolation error O(h^2) in the broken energy norm, where h is the subdivision parameter tending to zero. 展开更多
关键词 Maxwell's equations rectangular nonconforming element second order convergence behavior error estimates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部