Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and...Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.展开更多
China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynam...China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynamics after an unanticipated economic shock, which was believed to have similar properties with the backward-looking expecta- tion models. The analysis of the housing price dynamics is based on the cobweb model with a simple user cost affected demand and a stock-flow supply assumption. Several nth- order delay rational difference equations are set up to illustrate the properties of housing dynamics phenomena, such as the equilibrium or oscillations, overshoot or undershoot and convergent or divergent, for a kind of heterogeneous backward-looking expectation models. The results show that demand elasticity is less than supply elasticity is not a necessary condition for the occurrence of oscillation. The housing price dynamics will vary substantially with the heterogeneous backward-looking expectation assumption and some other endogenous factors.展开更多
In this paper, we study the convergence of solutions for a class of difference equations with variable delay and give some results about the solutions of the equations converge to a constant. Our results generalize th...In this paper, we study the convergence of solutions for a class of difference equations with variable delay and give some results about the solutions of the equations converge to a constant. Our results generalize the conclusions obtained in .展开更多
Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confi...Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confirmed by some numerical examples.The results obtained in this work extend the corresponding ones in literature.展开更多
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc...The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,...This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-spa...A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.展开更多
文摘Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.
文摘China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynamics after an unanticipated economic shock, which was believed to have similar properties with the backward-looking expecta- tion models. The analysis of the housing price dynamics is based on the cobweb model with a simple user cost affected demand and a stock-flow supply assumption. Several nth- order delay rational difference equations are set up to illustrate the properties of housing dynamics phenomena, such as the equilibrium or oscillations, overshoot or undershoot and convergent or divergent, for a kind of heterogeneous backward-looking expectation models. The results show that demand elasticity is less than supply elasticity is not a necessary condition for the occurrence of oscillation. The housing price dynamics will vary substantially with the heterogeneous backward-looking expectation assumption and some other endogenous factors.
文摘In this paper, we study the convergence of solutions for a class of difference equations with variable delay and give some results about the solutions of the equations converge to a constant. Our results generalize the conclusions obtained in .
基金This work is supported by NSF of China(10971175)Specialized Research Fund for the Doctoral Program of Higher Education of China(20094301110001)+2 种基金Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1179)NSF of Hunan Province(10JJ7001)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,and Fund Project of Hunan Province Education Office(11C1220).
文摘Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confirmed by some numerical examples.The results obtained in this work extend the corresponding ones in literature.
文摘The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
基金supported by the NSFC(Grant No.11971010)the Science and Technology Development Fund of Macao(Grant No.0122/2020/A3)MYRG2020-00224-FST from University of Macao,China.
文摘This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.
基金This work was supported by Simons Foundation Collaboration Grant[351025]。
文摘A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2010A100003)the National Natural Science Foundation of China(40805020)