期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Oscillation in a Variable Delay Logistic Difference Equation
1
作者 TAN Qiong-hua CHEN Ming 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第1期87-93,共7页
Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and... Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1. 展开更多
关键词 variable delay Logistic difference equation positive solution OSCILLATION
下载PDF
Nonlinear delay difference equations for housing dynamics assuming heterogeneous backward-looking expectations 被引量:1
2
作者 梁以德 徐佳娜 崔詠芯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第6期785-798,共14页
China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynam... China's first interest rate hike during the last decade, aiming to cool down the seemingly overheated real estate market, had aroused more caution on housing market. This paper aims to analyze the housing price dynamics after an unanticipated economic shock, which was believed to have similar properties with the backward-looking expecta- tion models. The analysis of the housing price dynamics is based on the cobweb model with a simple user cost affected demand and a stock-flow supply assumption. Several nth- order delay rational difference equations are set up to illustrate the properties of housing dynamics phenomena, such as the equilibrium or oscillations, overshoot or undershoot and convergent or divergent, for a kind of heterogeneous backward-looking expectation models. The results show that demand elasticity is less than supply elasticity is not a necessary condition for the occurrence of oscillation. The housing price dynamics will vary substantially with the heterogeneous backward-looking expectation assumption and some other endogenous factors. 展开更多
关键词 housing price dynamics delay rational difference equations equilibrium and oscillations convergent and divergent overshoot and undershoot
下载PDF
CONVERGENCE OF SOLUTIONS FOR A CLASS OF DIFFERENCE EQUATIONS WITH VARIABLE DELAY
3
作者 戴斌祥 黄立宏 周展 《Annals of Differential Equations》 1998年第2期19-21,共3页
In this paper, we study the convergence of solutions for a class of difference equations with variable delay and give some results about the solutions of the equations converge to a constant. Our results generalize th... In this paper, we study the convergence of solutions for a class of difference equations with variable delay and give some results about the solutions of the equations converge to a constant. Our results generalize the conclusions obtained in . 展开更多
关键词 convergence difference equation unbounded variable delay
原文传递
Convergence of Linear Multistep Methods and One-Leg Methods for Index-2 Differential-Algebraic Equations with a Variable Delay 被引量:2
4
作者 Hongliang Liu Aiguo Xiao 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第5期636-646,共11页
Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confi... Linear multistep methods and one-leg methods are applied to a class of index-2 nonlinear differential-algebraic equations with a variable delay.The corresponding convergence results are obtained and successfully confirmed by some numerical examples.The results obtained in this work extend the corresponding ones in literature. 展开更多
关键词 index-2 differential-algebraic equations variable delay linear mutistep methods one-leg methods convergence
原文传递
Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model 被引量:1
5
作者 Temur Jangveladze Zurab Kiguradze +1 位作者 Mikheil Gagoshidze Maia Nikolishvili 《International Journal of Biomathematics》 2015年第5期31-51,共21页
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc... The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too. 展开更多
关键词 variable directions difference scheme nonlinear partial differential equations stability convergence vein formation.
原文传递
Compact Difference Method for Time-Fractional Neutral Delay Nonlinear Fourth-Order Equation
6
作者 Huan Wang Qing Yang 《Engineering(科研)》 CAS 2022年第12期544-566,共23页
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s... In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme. 展开更多
关键词 Two-Dimensional Nonlinear Sub-Diffusion equations Neutral delay Compact difference Scheme convergence Stability
下载PDF
ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY
7
作者 Tao Sun Chengjian Zhang Haiwei Sun 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期705-734,共30页
This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,... This paper deals with numerical methods for solving one-dimensional(1D)and twodimensional(2D)initial-boundary value problems(IBVPs)of space-fractional sine-Gordon equations(SGEs)with distributed delay.For 1D problems,we construct a kind of oneparameter finite difference(OPFD)method.It is shown that,under a suitable condition,the proposed method is convergent with second order accuracy both in time and space.In implementation,the preconditioned conjugate gradient(PCG)method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method.For 2D problems,we develop another kind of OPFD method.For such a method,two classes of accelerated schemes are suggested,one is alternative direction implicit(ADI)scheme and the other is ADI-PCG scheme.In particular,we prove that ADI scheme can arrive at second-order accuracy in time and space.With some numerical experiments,the computational effectiveness and accuracy of the methods are further verified.Moreover,for the suggested methods,a numerical comparison in computational efficiency is presented. 展开更多
关键词 Fractional sine-Gordon equation with distributed delay One-parameter finite difference methods convergence analysis ADI scheme PCG method
原文传递
ECONOMICAL DIFFERENCE SCHEME FOR ONE MULTI-DIMENSIONAL NONLINEAR SYSTEM
8
作者 Temur JANGVELADZE Zurab KIGURADZE Mikheil GAGOSHIDZE 《Acta Mathematica Scientia》 SCIE CSCD 2019年第4期971-988,共18页
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ... The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given. 展开更多
关键词 System of nonlinear partial differential equationS variable DIRECTIONS finite difference scheme stability and convergence numerical resolution
下载PDF
A STOCHASTIC ALGORITHM FOR FAULT INVERSE PROBLEMS IN ELASTIC HALF SPACE WITH PROOF OF CONVERGENCE
9
作者 Darko Volkov 《Journal of Computational Mathematics》 SCIE CSCD 2022年第6期955-976,共22页
A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-spa... A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm. 展开更多
关键词 Mixed Linear and nonlinear inverse problems Bayesian modeling Regularization Approximation to solutions by quadrature convergence of Random variables Elasticity equations in unbounded domains
原文传递
OSCILLATION OF SOLUTIONS FOR A CLASS OF UNBOUNDED DELAY DIFFERENTIAL EQUATIONS 被引量:1
10
作者 GuanKaizhong 《Annals of Differential Equations》 2005年第2期144-152,共9页
In this paper we present infinite-integral conditions for the oscillation of a class of unbounded delay differential equations.
关键词 unbounded delay differential equation OSCILLATION variable coefficient
原文传递
变分数阶扩散方程的新隐式差分法 被引量:3
11
作者 于春肖 苑润浩 +1 位作者 魏国勇 崔栋 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第1期12-18,共7页
针对变分数阶扩散方程,提出新隐式差分法.首先,对二阶空间导数和Riemann-Liouville型变时间分数阶导数算子进行离散化处理,将变分数阶扩散方程转化为代数方程组求解;然后,借助Fourier级数技术给出了新隐式差分法的收敛性分析;最后,通过... 针对变分数阶扩散方程,提出新隐式差分法.首先,对二阶空间导数和Riemann-Liouville型变时间分数阶导数算子进行离散化处理,将变分数阶扩散方程转化为代数方程组求解;然后,借助Fourier级数技术给出了新隐式差分法的收敛性分析;最后,通过数值算例检验该方法,计算结果表明了新隐式差分法的可行性和有效性. 展开更多
关键词 变分数阶扩散方程 新隐式差分法 变时间分数阶导数算子 收敛性分析
下载PDF
变系数时间-空间分数阶对流-扩散方程的数值算法比较 被引量:2
12
作者 马亮亮 刘冬兵 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期757-760,共4页
文章分别采用显式差分格式、隐式差分格式和Crank-Nicholson格式,数值求解变系数时间-空间分数阶对流-扩散方程,并从局部截断误差、稳定性和计算量3个方面对数值算法进行了比较分析,通过数值算例验证了分析结果。
关键词 对流-扩散方程 有限差分格式 稳定性 收敛性 变系数
下载PDF
变系数分数阶反应-扩散方程的数值解法 被引量:2
13
作者 马亮亮 刘冬兵 《沈阳大学学报(自然科学版)》 CAS 2014年第1期76-80,共5页
考虑了变系数分数阶反应-扩散方程,将一阶的时间偏导数和二阶的空间偏导数分别用Caputo分数阶导数和Riemann-Liouville分数阶导数替换,利用L1算法和G算法对方程的变系数分数阶导数进行适当的离散,给出了该方程的一种计算有效的隐式差分... 考虑了变系数分数阶反应-扩散方程,将一阶的时间偏导数和二阶的空间偏导数分别用Caputo分数阶导数和Riemann-Liouville分数阶导数替换,利用L1算法和G算法对方程的变系数分数阶导数进行适当的离散,给出了该方程的一种计算有效的隐式差分格式,并证明了这个差分格式是无条件稳定和无条件收敛的,且具有o(τ+h)收敛阶.最后用数值例子说明差分格式是有效的. 展开更多
关键词 变系数 反应一扩散方程 隐式差分 稳定性 收敛性
下载PDF
一类变系数微分方程差分格式的收敛性(英文)
14
作者 徐琛梅 菅帅 王波 《应用数学》 CSCD 北大核心 2012年第3期570-576,共7页
本文首先对一类变系数微分方程建立有限差分格式.然后利用矩阵的特征值和范数理论,讨论该格式解的收敛性和唯一性.通过数值算例,说明该格式既有效又便于模拟.并且文中所用方法还能用于高阶微分方程和某些非线性微分方程问题的研究.
关键词 收敛性 差分格式 变系数微分方程 总体截断误差
下载PDF
一类八阶变系数微分方程的数值方法(英文)
15
作者 徐琛梅 马松雅 《工程数学学报》 CSCD 北大核心 2014年第4期601-610,共10页
本文首先对一类八阶变系数微分方程建立了有限差分格式,并将该格式表示成矩阵的形式.然后,利用矩阵特征值和范数的理论,证明该格式解的收敛性和唯一性.借助数值算例说明该格式既有效、又便于模拟.另外,文中所用方法还能用于应用中的某... 本文首先对一类八阶变系数微分方程建立了有限差分格式,并将该格式表示成矩阵的形式.然后,利用矩阵特征值和范数的理论,证明该格式解的收敛性和唯一性.借助数值算例说明该格式既有效、又便于模拟.另外,文中所用方法还能用于应用中的某些非线性微分方程问题的研究. 展开更多
关键词 变系数微分方程 有限差分格式 收敛性和唯一性 总体截断误差
下载PDF
一类变系数常微分方程的一个显式差分格式
16
作者 范乐乐 《河池学院学报》 2012年第5期81-84,共4页
有限差分法广泛应用于微分方程数值求解中。本文对于一类变系数常微分方程的边值问题建立了一个显式差分格式,它的截断误差阶为O(h2),证明了该格式存在唯一解,且在L∞范数意义下是无条件收敛和稳定的。
关键词 变系数 常微分方程 差分格式 收敛性 稳定性
下载PDF
非线性变阶空间-时间分数阶对流-扩散方程的全隐式有限差分格式 被引量:2
17
作者 马亮亮 谭千蓉 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第5期627-634,共8页
针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后... 针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后,通过离散的能量方法证明全隐式有限差分格式的稳定性和收敛性,并验证其收敛阶为O(τ+h);最后,通过数值算例检验该方法.试验结果表明:全隐式有限差分格式求解非线性变阶空间-时间分数阶对流-扩散方程初边值问题是可行和有效的. 展开更多
关键词 变阶空间-时间分数阶对流-扩散方程 全隐式有限差分格式 收敛性 稳定性 能量方法
下载PDF
基于多项式预处理的特殊双变量矩阵方程异类约束解算法
18
作者 周咸富 段复建 《桂林电子科技大学学报》 2019年第2期153-158,共6页
针对共轭梯度法求解双变量矩阵方程异类约束解收敛速度较慢的问题,引入多项式预处理技术,构造了一个预处理矩阵,从而改变了系数矩阵奇异值的分布,使奇异值的比值趋于1,达到提高收敛速度的目的。针对特殊一类双变量矩阵方程异类约束解的... 针对共轭梯度法求解双变量矩阵方程异类约束解收敛速度较慢的问题,引入多项式预处理技术,构造了一个预处理矩阵,从而改变了系数矩阵奇异值的分布,使奇异值的比值趋于1,达到提高收敛速度的目的。针对特殊一类双变量矩阵方程异类约束解的求解问题,构造了多项式预处理共轭梯度法,证明了该算法是收敛性的,且具有Q-线性收敛速度。数值实验结果表明,本算法比共轭梯度法收敛速度更快,迭代时间更短。 展开更多
关键词 双变量矩阵方程 异类约束解 多项式预处理技术 Q-线性收敛
下载PDF
非线性变阶分数阶扩散方程的全隐差分格式 被引量:5
19
作者 马维元 张海东 邵亚斌 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期93-97,共5页
对于变阶的非线性分数阶扩散方程,提出了一种全隐的差分格式。然后,通过离散的能量方法证明了所提出的格式是无条件稳定的,其收敛阶为O(τ+h)。通过数值试验表明,全隐的差分格式是有效的和可靠的。
关键词 变阶的非线性分数阶扩散方程 全隐的差分格式 迭代算法 收敛性 稳定性
原文传递
解双边空间分数阶对流扩散方程的二阶隐式有限差分法 被引量:1
20
作者 朱琳 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期99-106,共8页
给出一类解变系数双边空间分数阶对流扩散方程的隐式有限差分格式,并证明这类格式当分数阶导数α∈[17(1/2)-1/2,2]时无条件稳定且由此得出收敛阶为O(Δt+h2)。最后给出数值算例验证。
关键词 变系数双边空间分数阶对流扩散偏微分方程 有限差分格式 无条件稳定 收敛阶
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部