Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of th...Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of the large cities have completed their surface infrastructure. It has become urgent to address their issues for overpopulated cities where nowadays all infrastructure is overwhelmed, these issues must be addressed, solved and have vision to build underground infrastructure. Developed countries are focused on expanding their infrastructure for road systems, subway network, railway, storm, and sanitary systems. The emergency for underground infrastructure development requires more large-scale projects to be built and it is becoming more crucial building tunnels/underground structures for the future than ever before. Engineering focus, scientific searches are looking to develop their ideas for designing and delivering project underground, but government, agencies and engineers are concerned about the safety, durability, functionality, and the lifetime of this structures planned to be functional for decades. To address all this concerns this study provides information of how to identify the risk on tunnels and underground structures by capturing data from the beginning phases of construction, to analyze, evaluate and produce bulletins and engineering reports through convergences and monitoring. Convergences are the key factor on development of infrastructure underground as it is the only way to explore and analyze the rock mass disturbance during excavation. Convergences and monitoring in infrastructure are the safety coefficient for building underground, preventing accidents, and assessing real risks associated with tunnel/mine works and ensuring progress of the construction in underground structures. This study delves into the engineering role of convergence monitoring, during construction activities on project excavated using New Austrian Tunnelling method and Sequential Excavation Method. The primary objective of convergence monitoring is to gather critical information on ground movements and disturbances, thereby enhancing safety measures during tunnel construction. The monitoring process serves as an early warning system offering evidence of the real risks associated with underground infrastructure, bringing results and engineering data to be used for the design as key coefficient for structural design, type of material, type and strength of the concrete, rebars, concrete mix design. By using the convergence and monitoring system on underground infrastructure this study represents information that can contribute to risk assessment, structural analysis, and the lifetime of a project.展开更多
A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discus...A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discussed. The results obtained extend the results of Liang (1999, 2000).展开更多
An equivalent description of u-uniform convergence is presented first. Then the relations among the order convergence, u-uniform convergence and norm convergence of sequences are discussed in Riesz spaces. An equivale...An equivalent description of u-uniform convergence is presented first. Then the relations among the order convergence, u-uniform convergence and norm convergence of sequences are discussed in Riesz spaces. An equivalence of the three convergences is brought forward; namely, {fn} is a u-uniform Cauchy sequence. Finally the relations among the three convergences of sequences are also extended to the relations among the convergences of nets in Riesz spaces.展开更多
The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s met...The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.展开更多
Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into ...Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into hibernation and aestivation based on seasonal patterns.However,the mechanisms by which organisms adapt to their environments during dormancy,as well as the potential relationships between different states of dormancy,deserve further exploration.Here,we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation,respectively.Based on histological and transcriptomic analysis of multiple organs,we discovered that dormancy involved a coordinated functional response across organs.Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures.Notably,similarities in gene expression patterns pertaining to energy metabolism,neural activity,and biosynthesis were noted during hibernation,suggesting a potential correlation between hibernation and aestivation.To further explore the relationship between these two phenomena,we analyzed other dormancy-capable species using data from publicly available databases.This comparative analysis revealed that most orthologous genes involved in metabolism,cell proliferation,and neural function exhibited consistent expression patterns during dormancy,indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution.In conclusion,this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.展开更多
Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include ele...Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.展开更多
Dear Editor,In this letter, a finite-time convergent analysis of continuous action iterated dilemma(CAID) is proposed. In traditional evolutionary game theory, the strategy of the player is binary(cooperation or defec...Dear Editor,In this letter, a finite-time convergent analysis of continuous action iterated dilemma(CAID) is proposed. In traditional evolutionary game theory, the strategy of the player is binary(cooperation or defection), which limits the number of strategies a player can choose from.展开更多
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order dynamics.In order to achieve the prior-given and user-de...Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order dynamics.In order to achieve the prior-given and user-defined convergence time for the PEG,a PTNE seeking algorithm has been developed to facilitate collaboration among multiple pursuers for capturing the evader without the need for any global information.Then,it is theoretically proved that the prescribedtime convergence of the designed algorithm for achieving Nash equilibrium of PEG.Eventually,the effectiveness of the PTNE method was validated by numerical simulation results.A PEG consists of two groups of agents:evaders and pursuers.The pursuers aim to capture the evaders through cooperative efforts,while the evaders strive to evade capture.PEG is a classic noncooperative game.It has attracted plenty of attention due to its wide application scenarios,such as smart grids[1],formation control[2],[3],and spacecraft rendezvous[4].It is noteworthy that most previous research on seeking the Nash equilibrium of the game,where no agent has an incentive to change its actions,has focused on asymptotic and exponential convergence[5]-[7].展开更多
A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gr...A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.展开更多
Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks an...Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.Generative AI has been recognized as a fundamentally innovative technology to drive the advancement of intelligent wireless communications and networks.展开更多
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T...An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergenc...AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.展开更多
In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)cod...In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)code,STAR-CCM+is used to analyze total resistance,sinkage,trim,wave profile,and wave pattern for a range of Froude numbers.The governing RANS equations of fluid flow are discretized using the finite volume method(FVM),and the pressure-velocity coupling equations are solved using the SIMPLE(semi-implicit method for pressure linked equations)algorithm.Volume of fluid(VOF)method is employed to capture the interface between air and water phases.A fine discretization is performed in between these two phases to get a higher mesh resolution.The fluid-structure interaction(FSI)is modeled with the dynamic fluid-body interaction(DFBI)module within the STAR-CCM+.The numerical results are verified using the results available in the literatures.Grid convergence studies are also carried out to determine the dependence of results on the grid quality.In comparison to previous findings,the current CFD analysis shows the satisfactory results.展开更多
We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse.Our particle-in-cell simulations and coupled hydrodynamic simulations reveal...We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse.Our particle-in-cell simulations and coupled hydrodynamic simulations reveal that the compression process is initiated by both magnetic pressure and surface ablation associated with a strong transient surface return current with density of the order of 10^(17) A/m^(2) and lifetime of 100 fs.The results show that the dominant compression mechanism is governed by the plasma β,i.e.,the ratio of thermal pressure to magnetic pressure.For targets with small radius and low atomic number Z,the magnetic pressure is the dominant shock compression mechanism.According to a scaling law,as the target radius and Z increase,the surface ablation pressure becomes the main mechanism generating convergent shocks.Furthermore,an indirect experimental indication of shocked hydrogen compression is provided by optical shadowgraphy measurements of the evolution of the plasma expansion diameter.The results presented here provide a novel basis for the generation of extremely high pressures exceeding Gbar(100 TPa)to enable the investigation of high-pressure physics using femtosecond J-level laser pulses,offering an alternative to nanosecond kJ-laser pulse-driven and pulsed power Z-pinch compression methods.展开更多
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th...To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.展开更多
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)...Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.展开更多
This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious...This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.展开更多
文摘Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of the large cities have completed their surface infrastructure. It has become urgent to address their issues for overpopulated cities where nowadays all infrastructure is overwhelmed, these issues must be addressed, solved and have vision to build underground infrastructure. Developed countries are focused on expanding their infrastructure for road systems, subway network, railway, storm, and sanitary systems. The emergency for underground infrastructure development requires more large-scale projects to be built and it is becoming more crucial building tunnels/underground structures for the future than ever before. Engineering focus, scientific searches are looking to develop their ideas for designing and delivering project underground, but government, agencies and engineers are concerned about the safety, durability, functionality, and the lifetime of this structures planned to be functional for decades. To address all this concerns this study provides information of how to identify the risk on tunnels and underground structures by capturing data from the beginning phases of construction, to analyze, evaluate and produce bulletins and engineering reports through convergences and monitoring. Convergences are the key factor on development of infrastructure underground as it is the only way to explore and analyze the rock mass disturbance during excavation. Convergences and monitoring in infrastructure are the safety coefficient for building underground, preventing accidents, and assessing real risks associated with tunnel/mine works and ensuring progress of the construction in underground structures. This study delves into the engineering role of convergence monitoring, during construction activities on project excavated using New Austrian Tunnelling method and Sequential Excavation Method. The primary objective of convergence monitoring is to gather critical information on ground movements and disturbances, thereby enhancing safety measures during tunnel construction. The monitoring process serves as an early warning system offering evidence of the real risks associated with underground infrastructure, bringing results and engineering data to be used for the design as key coefficient for structural design, type of material, type and strength of the concrete, rebars, concrete mix design. By using the convergence and monitoring system on underground infrastructure this study represents information that can contribute to risk assessment, structural analysis, and the lifetime of a project.
基金Supported by Social Science Foundation of China(04BTJ003).
文摘A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discussed. The results obtained extend the results of Liang (1999, 2000).
文摘An equivalent description of u-uniform convergence is presented first. Then the relations among the order convergence, u-uniform convergence and norm convergence of sequences are discussed in Riesz spaces. An equivalence of the three convergences is brought forward; namely, {fn} is a u-uniform Cauchy sequence. Finally the relations among the three convergences of sequences are also extended to the relations among the convergences of nets in Riesz spaces.
文摘The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.
基金supported by the National Natural Science Foundation of China (32170480,31972866)Youth Innovation Promotion Association,Chinese Academy of Sciences (http://www.yicas.cn)+1 种基金Young Top-notch Talent Cultivation Program of Hubei ProvinceWuhan Branch,Supercomputing Center,Chinese Academy of Sciences,China。
文摘Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments.After a period of dormancy,organisms often exhibit exceptional resilience.This period is typically divided into hibernation and aestivation based on seasonal patterns.However,the mechanisms by which organisms adapt to their environments during dormancy,as well as the potential relationships between different states of dormancy,deserve further exploration.Here,we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation,respectively.Based on histological and transcriptomic analysis of multiple organs,we discovered that dormancy involved a coordinated functional response across organs.Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures.Notably,similarities in gene expression patterns pertaining to energy metabolism,neural activity,and biosynthesis were noted during hibernation,suggesting a potential correlation between hibernation and aestivation.To further explore the relationship between these two phenomena,we analyzed other dormancy-capable species using data from publicly available databases.This comparative analysis revealed that most orthologous genes involved in metabolism,cell proliferation,and neural function exhibited consistent expression patterns during dormancy,indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution.In conclusion,this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.
基金supported by the National Natural Science Foundation of China (Grant Nos.52171220,92163212,and 92163119)the Research Funding of Wuhan Polytechnic University (Grant No.2022RZ059)the National Innovation and Entrepreneurship Training Program for College Students (Grant No.S202310497202)。
文摘Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.
基金supported in part by the National Science Fund for Distinguished Young Scholarship of China (62025602)the National Natural Science Foundation of China (11931915, U22B2036)+2 种基金Fok Ying-Tong Education Foundationm China (171105)Technological lmnovation Team of Shaanxi Province (2020TD013)the Tencent Foundation and XPLORER PRIZE。
文摘Dear Editor,In this letter, a finite-time convergent analysis of continuous action iterated dilemma(CAID) is proposed. In traditional evolutionary game theory, the strategy of the player is binary(cooperation or defection), which limits the number of strategies a player can choose from.
基金supported in part by the Natural Science Foundation of Jiangsu Province of China(BK20231417,BK20210214)the National Natural Science Foundation of China(62273094,62203114)the“Zhishan”Scholars Programs of Southeast University.
文摘Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order dynamics.In order to achieve the prior-given and user-defined convergence time for the PEG,a PTNE seeking algorithm has been developed to facilitate collaboration among multiple pursuers for capturing the evader without the need for any global information.Then,it is theoretically proved that the prescribedtime convergence of the designed algorithm for achieving Nash equilibrium of PEG.Eventually,the effectiveness of the PTNE method was validated by numerical simulation results.A PEG consists of two groups of agents:evaders and pursuers.The pursuers aim to capture the evaders through cooperative efforts,while the evaders strive to evade capture.PEG is a classic noncooperative game.It has attracted plenty of attention due to its wide application scenarios,such as smart grids[1],formation control[2],[3],and spacecraft rendezvous[4].It is noteworthy that most previous research on seeking the Nash equilibrium of the game,where no agent has an incentive to change its actions,has focused on asymptotic and exponential convergence[5]-[7].
基金supported by the Guangxi Science and Technology base and Talent Project(AD22080047)the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063)+1 种基金the Innovation Funds of Chinese University(2021BCF03001)the special foundation for Guangxi Ba Gui Scholars.
文摘A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
文摘Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.Generative AI has been recognized as a fundamentally innovative technology to drive the advancement of intelligent wireless communications and networks.
基金supported by the National Natural Science Foundation of China (Grant Nos.41730965, U2242204, and 41175047)the National Key Basic Research and Development Project of China (Grant No.2013CB430104)+2 种基金the Key Project of the Joint Funds of the Natural Science Foundation of Zhejiang Province (Grant No.LZJMZ23D050003financial support from the China Scholarship Council for her visit to CAPSUniversity of Oklahoma
文摘An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
文摘AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.
文摘In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)code,STAR-CCM+is used to analyze total resistance,sinkage,trim,wave profile,and wave pattern for a range of Froude numbers.The governing RANS equations of fluid flow are discretized using the finite volume method(FVM),and the pressure-velocity coupling equations are solved using the SIMPLE(semi-implicit method for pressure linked equations)algorithm.Volume of fluid(VOF)method is employed to capture the interface between air and water phases.A fine discretization is performed in between these two phases to get a higher mesh resolution.The fluid-structure interaction(FSI)is modeled with the dynamic fluid-body interaction(DFBI)module within the STAR-CCM+.The numerical results are verified using the results available in the literatures.Grid convergence studies are also carried out to determine the dependence of results on the grid quality.In comparison to previous findings,the current CFD analysis shows the satisfactory results.
文摘We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse.Our particle-in-cell simulations and coupled hydrodynamic simulations reveal that the compression process is initiated by both magnetic pressure and surface ablation associated with a strong transient surface return current with density of the order of 10^(17) A/m^(2) and lifetime of 100 fs.The results show that the dominant compression mechanism is governed by the plasma β,i.e.,the ratio of thermal pressure to magnetic pressure.For targets with small radius and low atomic number Z,the magnetic pressure is the dominant shock compression mechanism.According to a scaling law,as the target radius and Z increase,the surface ablation pressure becomes the main mechanism generating convergent shocks.Furthermore,an indirect experimental indication of shocked hydrogen compression is provided by optical shadowgraphy measurements of the evolution of the plasma expansion diameter.The results presented here provide a novel basis for the generation of extremely high pressures exceeding Gbar(100 TPa)to enable the investigation of high-pressure physics using femtosecond J-level laser pulses,offering an alternative to nanosecond kJ-laser pulse-driven and pulsed power Z-pinch compression methods.
基金supported by the Funds for the Central Universities。
文摘To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.
文摘Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.
文摘This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.