Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx...Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx is lim n →∞ na n = 0. We generalize (or weaken) the monotonic condition on the coefficient sequence {a n } in this classical result to the so-called mean value bounded variation condition and prove that the generalized condition cannot be weakened further. We also establish an analogue to the generalized Chaundy-Jolliffe theorem in the complex space.展开更多
基金supported by National Sciences and Engineering Research Council of CanadaNational Natural Science Foundation of China (Grant No. 10471130)
文摘Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx is lim n →∞ na n = 0. We generalize (or weaken) the monotonic condition on the coefficient sequence {a n } in this classical result to the so-called mean value bounded variation condition and prove that the generalized condition cannot be weakened further. We also establish an analogue to the generalized Chaundy-Jolliffe theorem in the complex space.