Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investi...Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investigated the influence on details of the flow fields,especially vortexes in compressors. CFD method is validated with experi?mental data firstly. Three single?slot and one double?slot endwall boundary layer suction schemes are designed and investigated. In addition to the investigation of aerodynamic performance of the cascades with and without suction,variations in corner open separation,passage vortex,and concentration shedding vortex,which are rarely seen for the flow controlled blades in published literatures,are analyzed. Then,flow models,which are the ultimate aim,of both baseline and aspirated cascades are established. Results show that single?slot endwall suction scheme adjacent to the suction surface can e ectively remove the corner open separation. With suction mass flow rate of 0.85%,the overall loss coe cient and endwall loss coe cient of the cascade are reduced by 25.2% and 48.6%,respectively. Besides,this scheme increases the static pressure rise coe cient of the cascade by 3.2% and the flow turning angle of up to 3.3° at 90% span. The concentration shedding vortex decreases,whereas the passage vortex increases. For single?slot suction schemes near the middle pitchwise of the passage,the concentration shedding vortex increases and the passage vortex is divided into two smaller passage vortexes,which converge into a single?passage vortex near the trailing edge section of the cascade. For the double?slot suction scheme,triple?passage vortexes are presented in the blade passage. Some new vortex structures are discovered,and the novel flow models of aspirated compressor cascade are proposed,which are important to improve the design of multi?stage aspirated compressors.展开更多
As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103...As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions.展开更多
基金Supported by China Postdoctoral Science Foundation(Grant No.2016M600015)National Natural Science Foundation of China(Grant Nos.51741601,51236006)
文摘Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investigated the influence on details of the flow fields,especially vortexes in compressors. CFD method is validated with experi?mental data firstly. Three single?slot and one double?slot endwall boundary layer suction schemes are designed and investigated. In addition to the investigation of aerodynamic performance of the cascades with and without suction,variations in corner open separation,passage vortex,and concentration shedding vortex,which are rarely seen for the flow controlled blades in published literatures,are analyzed. Then,flow models,which are the ultimate aim,of both baseline and aspirated cascades are established. Results show that single?slot endwall suction scheme adjacent to the suction surface can e ectively remove the corner open separation. With suction mass flow rate of 0.85%,the overall loss coe cient and endwall loss coe cient of the cascade are reduced by 25.2% and 48.6%,respectively. Besides,this scheme increases the static pressure rise coe cient of the cascade by 3.2% and the flow turning angle of up to 3.3° at 90% span. The concentration shedding vortex decreases,whereas the passage vortex increases. For single?slot suction schemes near the middle pitchwise of the passage,the concentration shedding vortex increases and the passage vortex is divided into two smaller passage vortexes,which converge into a single?passage vortex near the trailing edge section of the cascade. For the double?slot suction scheme,triple?passage vortexes are presented in the blade passage. Some new vortex structures are discovered,and the novel flow models of aspirated compressor cascade are proposed,which are important to improve the design of multi?stage aspirated compressors.
基金supported by the National Natural Science Foundation of China(No.51606187 and No.51706223)the National Major Science and Technology Project of China(Grant No.2019-II-0004-0024)。
文摘As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions.