In order to improve the calorific value and the recovery yield of converter gas during the steelmaking process, a novel and thermodynamically admissible process was proposed. This method involved injecting pulverized ...In order to improve the calorific value and the recovery yield of converter gas during the steelmaking process, a novel and thermodynamically admissible process was proposed. This method involved injecting pulverized coal into the vaporization cooling flue of a converter, and the approach was developed based on an industrial 30 t converter. The effects of temperature, O2 content, and the volumetric ratio of CO to CO2 on the conversion of the mixed components of gas were analyzed using thermodynamic calculations. Furthermore, the effect of the injection rate on the quality and quantity of gas was investigated. The results show that the O2 and CO2 components of flue gas decrease as the injection rate increases, whereas the CO and H2 components synchronously increase. With the injection rate of 30 kg min-1, the 02 and CO2 components of the gas decreased by 64.12 and 41.19%, respectively, while the CO and H2 increased by 20.09 and 236.84%, respectively, and the recovery time of gas increased by 11.61%, compared to non-injection.展开更多
文摘In order to improve the calorific value and the recovery yield of converter gas during the steelmaking process, a novel and thermodynamically admissible process was proposed. This method involved injecting pulverized coal into the vaporization cooling flue of a converter, and the approach was developed based on an industrial 30 t converter. The effects of temperature, O2 content, and the volumetric ratio of CO to CO2 on the conversion of the mixed components of gas were analyzed using thermodynamic calculations. Furthermore, the effect of the injection rate on the quality and quantity of gas was investigated. The results show that the O2 and CO2 components of flue gas decrease as the injection rate increases, whereas the CO and H2 components synchronously increase. With the injection rate of 30 kg min-1, the 02 and CO2 components of the gas decreased by 64.12 and 41.19%, respectively, while the CO and H2 increased by 20.09 and 236.84%, respectively, and the recovery time of gas increased by 11.61%, compared to non-injection.