Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve a...Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra...Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.展开更多
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ...A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.展开更多
Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to impr...Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to improve the level of automation operation and reducing labor intensity of staff and workers.Especially under the support of MES information system.Advanced and practical technology is adopted in converter,refining and continuous casting process.In recent years,production management and control,energy management and control,material tracking,cost control and equipment operation and maintenance and reducing personnel to new achieve-ments in reducing personnel.展开更多
The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of...The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.展开更多
This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a singl...This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.展开更多
Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages an...Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.展开更多
With the increase of steel production,the amount of steel slag piled up is on the rise.The article analyzes the current situation of blast furnace slag utilization,elaborates on the current treatment technology of bla...With the increase of steel production,the amount of steel slag piled up is on the rise.The article analyzes the current situation of blast furnace slag utilization,elaborates on the current treatment technology of blast furnace slag,and points out that in the future,the utilization of blast furnace slag will develop towards the direction of developing high value-added products,and the sensible heat recovery rate of blast furnace slag is expected to increase.Analyze the current application status and treatment process of converter slag.The comprehensive treat-ment technology of converter slag is limited by multiple factors,and it is proposed to control converter slag from the production source through"slag recycling".展开更多
Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organize...Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for these farmlands.The aim was to change the water resources regime to one that was beneficial to crop production.Arterial drainage,field drainage and appropriate sub soil treatments were required.The relation between plant products industry and the Four Waters distribution,also the main measures of the Four Waters converting in wet and low lying farmland were discussed in the paper.展开更多
We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward cur...We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward current of 8 A with a forward volt-age of 5 V,and has a reverse breakdown voltage of 612 V.The forward turn-on voltage(VF)and the on-resistance(Ron)are 1.17 V and 0.46Ω,respectively.The conversion efficiency of theβ-Ga_(2)O_(3)SBD-based DC-DC converter is 95.81%.This work indicates the great potential of Ga_(2)O_(3)SBDs and relevant circuits in power electronic applications.展开更多
AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: P...AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) Ⅰ, Ang Ⅱ, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P 〈 0.05). In contrast, Ang Ⅱ was significantly reduced in MLD. Ang-(1-7)/Ang Ⅱ ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang Ⅱ levels were lower and Ang-(1-7)/Ang Ⅱ ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ±0.04, P 〈 0.02), whereas the peripheral circulating Ang Ⅱ/Ang Ⅰ ratio was elevated in comparison to splanchnic levels (0.18 ±0.02 vs 0.13 ±0.02, P 〈 0.04). Ang-(1-7)/ Ang Ⅱ ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang Ⅱ may play a role in the hemodynamic changes of human cirrhosis.展开更多
Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical...Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.展开更多
Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibito...Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibitory peptides from milk casein. One potential hit was identified based on docking scores, subsequently confirmed by activity studies in vitro (IC50=20.85 μmol L-1). The proposed peptide in this study contains a unique sequence, Lys-Val-Leu-Ile-Leu-Ala. Moreover, we performed the docking studies to understand the binding mode between the enzyme and peptide hit.展开更多
The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was con...The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was considered a zoonotic disease, the virus has also spread among humans via respiratory secretions. The expression and distribution of angiotensin converting enzyme type 2(ACE2) in various human organs might also show other possible infection routes. High ACE2 ribonucleic acid expression has been identified in the gastrointestinal tract(GI) indicating its importance as a possible infection pathway of SARS-CoV-2. ACE2 induces viral entry into the host and most importantly has been found to be associated with the function of the gut. Its deficiency has been implicated in several pathologies such as colorectal inflammation. The renin-angiotensin system(RAS) is an essential regulatory cascade operating both at a local tissue level and at the systemic or circulatory level. The RAS may be important in the pathogenesis of chronic liver disease and is associated with the up-regulation of ACE2. Thus, the aim of this review is firstly, the analysis of some important general and genome characteristics of SARS-CoV-2 and secondly, and most importantly, to focus on the utility of ACE2 receptors in both SARS-CoV-2 replication and pathogenesis, especially in the GI tract.展开更多
AIM: To investigate the effect of angiotensin II type 1 receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) on intraocular growth factors and their receptors in streptozotocin-induced diabet...AIM: To investigate the effect of angiotensin II type 1 receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) on intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. METHODS: Forty Sprague-Dawley rats were divided into 4 groups: control, diabetes mellitus (DM), candesartan- treated DM, and enalapril-treated DM (each group, n---10). After the induction of DM by streptozotocin, candesartan [ARB, 5 mg/(kg · d)] and enalapril [ACEI, 10 mg/(kg · d)] were administered to rats orally for 4Wko Vascular endothelial growth factor (VEGF) and angiotensin II (Ang II) concentrations in the vitreous were measured using enzyme-linked immunosorbent assays, and VEGF receptor 2 and angiotensin II type 1 receptor (ATIR) levels were assessed at week 4 by Western blotting. RESULTS: Vitreous Ang II levels were significantly higher in the DM group and candesartan-treated DM group than in the control (P=0.04 and 0.005, respectively). Vitreous ATIR increased significantly in DM compared to the other three groups (P〈0.007). Candesartan-treated DM rats showed higher vitreal ATIR concentration than the enalapril-treated DM group and control (P〈0.001 and P=0.005, respectively). No difference in vitreous Ang II and ATIR concentration was found between the enalapril- treated DM group and control. VEGF and its receptor were below the minimum detection limit in all 4 groups. CONCLUSION: Increased Ang II and ATIR in the hyperglycemic state indicate activated the intraocular renin-angiotensin system, which is inhibited more effectively by systemic ACEI than systemic ARB.展开更多
文摘Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
文摘Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
基金Foundation of Heilongjiang Bayi Agricultural University(Grant Nos.ZRCPY201916ZRCPY201817).
文摘A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat.
文摘Steelmaking plant of Fujian San Gang min Guang Co.,Ltd.is keeping pace with the trend of the times.Under the new situation that the labor cost is rising day by day.Constantly introducing intelligent technology to improve the level of automation operation and reducing labor intensity of staff and workers.Especially under the support of MES information system.Advanced and practical technology is adopted in converter,refining and continuous casting process.In recent years,production management and control,energy management and control,material tracking,cost control and equipment operation and maintenance and reducing personnel to new achieve-ments in reducing personnel.
文摘The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.
文摘This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.
文摘Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.
文摘With the increase of steel production,the amount of steel slag piled up is on the rise.The article analyzes the current situation of blast furnace slag utilization,elaborates on the current treatment technology of blast furnace slag,and points out that in the future,the utilization of blast furnace slag will develop towards the direction of developing high value-added products,and the sensible heat recovery rate of blast furnace slag is expected to increase.Analyze the current application status and treatment process of converter slag.The comprehensive treat-ment technology of converter slag is limited by multiple factors,and it is proposed to control converter slag from the production source through"slag recycling".
文摘Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for these farmlands.The aim was to change the water resources regime to one that was beneficial to crop production.Arterial drainage,field drainage and appropriate sub soil treatments were required.The relation between plant products industry and the Four Waters distribution,also the main measures of the Four Waters converting in wet and low lying farmland were discussed in the paper.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61925110, 61821091, 62004184 and 62234007the Key-Area Research and Development Program of Guangdong Province under Grant No. 2020B010174002
文摘We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward current of 8 A with a forward volt-age of 5 V,and has a reverse breakdown voltage of 612 V.The forward turn-on voltage(VF)and the on-resistance(Ron)are 1.17 V and 0.46Ω,respectively.The conversion efficiency of theβ-Ga_(2)O_(3)SBD-based DC-DC converter is 95.81%.This work indicates the great potential of Ga_(2)O_(3)SBDs and relevant circuits in power electronic applications.
基金Supported by Fundacode Amparo à Pesquisa do Estado de Minas Gerais, Conselho Nacional de Desenvolvimento Científico e Tecnológico, FAPEMIG/CNPQ-PRONEX (Grupos de Excelência),Ministério de Ciência e Tecnologia/CNPq/ FAPEMIG-INCT-Nano-Biofar
文摘AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) Ⅰ, Ang Ⅱ, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P 〈 0.05). In contrast, Ang Ⅱ was significantly reduced in MLD. Ang-(1-7)/Ang Ⅱ ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang Ⅱ levels were lower and Ang-(1-7)/Ang Ⅱ ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ±0.04, P 〈 0.02), whereas the peripheral circulating Ang Ⅱ/Ang Ⅰ ratio was elevated in comparison to splanchnic levels (0.18 ±0.02 vs 0.13 ±0.02, P 〈 0.04). Ang-(1-7)/ Ang Ⅱ ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang Ⅱ may play a role in the hemodynamic changes of human cirrhosis.
基金supported by the Beijing Natural Science Foundation Program(Grant number:5102040)the Open Foundation of the Beijing Key Laboratory of Hypertension Research(Grant number:2015GXYB01)
文摘Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.
基金supported by the National High Technology Research and Development Program of China(863 Program, 2008AA10Z313)the Foundation for Sciand Tech Research Project of Zhejiang Province, China(2006C12096)Natural Science Foundation of Zhejiang Province, China (Y3090026)
文摘Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of hypertension. In this study, we applied virtual screening to discover a novel angiotensin I converting enzyme inhibitory peptides from milk casein. One potential hit was identified based on docking scores, subsequently confirmed by activity studies in vitro (IC50=20.85 μmol L-1). The proposed peptide in this study contains a unique sequence, Lys-Val-Leu-Ile-Leu-Ala. Moreover, we performed the docking studies to understand the binding mode between the enzyme and peptide hit.
文摘The emergence of coronavirus disease-2019 induced by a newly identified bcoronavirus, namely severe acute respiratory syndrome coronavirus 2(SARSCoV-2) has constituted a public health emergency. Even though it was considered a zoonotic disease, the virus has also spread among humans via respiratory secretions. The expression and distribution of angiotensin converting enzyme type 2(ACE2) in various human organs might also show other possible infection routes. High ACE2 ribonucleic acid expression has been identified in the gastrointestinal tract(GI) indicating its importance as a possible infection pathway of SARS-CoV-2. ACE2 induces viral entry into the host and most importantly has been found to be associated with the function of the gut. Its deficiency has been implicated in several pathologies such as colorectal inflammation. The renin-angiotensin system(RAS) is an essential regulatory cascade operating both at a local tissue level and at the systemic or circulatory level. The RAS may be important in the pathogenesis of chronic liver disease and is associated with the up-regulation of ACE2. Thus, the aim of this review is firstly, the analysis of some important general and genome characteristics of SARS-CoV-2 and secondly, and most importantly, to focus on the utility of ACE2 receptors in both SARS-CoV-2 replication and pathogenesis, especially in the GI tract.
基金Supported by Biomedical Research Institute Grant(PNU-2013-0373),Pusan National University Hospital
文摘AIM: To investigate the effect of angiotensin II type 1 receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) on intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. METHODS: Forty Sprague-Dawley rats were divided into 4 groups: control, diabetes mellitus (DM), candesartan- treated DM, and enalapril-treated DM (each group, n---10). After the induction of DM by streptozotocin, candesartan [ARB, 5 mg/(kg · d)] and enalapril [ACEI, 10 mg/(kg · d)] were administered to rats orally for 4Wko Vascular endothelial growth factor (VEGF) and angiotensin II (Ang II) concentrations in the vitreous were measured using enzyme-linked immunosorbent assays, and VEGF receptor 2 and angiotensin II type 1 receptor (ATIR) levels were assessed at week 4 by Western blotting. RESULTS: Vitreous Ang II levels were significantly higher in the DM group and candesartan-treated DM group than in the control (P=0.04 and 0.005, respectively). Vitreous ATIR increased significantly in DM compared to the other three groups (P〈0.007). Candesartan-treated DM rats showed higher vitreal ATIR concentration than the enalapril-treated DM group and control (P〈0.001 and P=0.005, respectively). No difference in vitreous Ang II and ATIR concentration was found between the enalapril- treated DM group and control. VEGF and its receptor were below the minimum detection limit in all 4 groups. CONCLUSION: Increased Ang II and ATIR in the hyperglycemic state indicate activated the intraocular renin-angiotensin system, which is inhibited more effectively by systemic ACEI than systemic ARB.