期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
随机激励下基于微分包含理论的电力系统低频振荡分析 被引量:4
1
作者 陈红坤 胡畔 +1 位作者 朱晓航 陈磊 《中国电机工程学报》 EI CSCD 北大核心 2019年第15期4395-4405,共11页
可再生能源大规模、高密度的接入显著改变了电力系统静/动态特性,对系统建模、仿真、分析和控制带来了挑战。该文针对含不确定性的电力系统稳定性分析问题,引入微分包含理论,建立一种随机激励下电力系统低频振荡分析模型。针对含不确定... 可再生能源大规模、高密度的接入显著改变了电力系统静/动态特性,对系统建模、仿真、分析和控制带来了挑战。该文针对含不确定性的电力系统稳定性分析问题,引入微分包含理论,建立一种随机激励下电力系统低频振荡分析模型。针对含不确定性的电力系统稳定性问题,采用线性多胞体(polytopic linear differential inclusion,PLDI)微分方法,将包含不确定性的随机激励表征为有限个元素的凸包。基于凸包李雅谱诺夫(Lyapunov)函数法推导多胞体系统稳定判据,并给出强阻尼系统约束条件;进而,基于Hankel范数逼近法,给出一种适用于大规模柔性互联系统的低频振荡分析方法。以简单两机系统、10机39节点系统验证所提出方法及稳定判据。仿真结果表明,该文所提方法能准确地刻画随机激励下的电力系统本质。 展开更多
关键词 微分包含 线性多胞体 凸包lyapunov函数 随机激励 小信号稳定性分析
下载PDF
Robust Stabilization for Nonlinear Differential Inclusion Systems Subject to Disturbances 被引量:3
2
作者 CAI Xiu-Shan 《自动化学报》 EI CSCD 北大核心 2010年第9期1327-1331,共5页
关键词 非线性微分包含扰 函数 设计技术 有效性
下载PDF
Robust stabilization of stochastic differential inclusion systems with time delay
3
作者 Leipo LIU Zhengzhi HAN +1 位作者 Xiushan CAI Jun HUANG 《控制理论与应用(英文版)》 EI 2012年第1期77-81,共5页
This paper is concerned with robust stabilization of stochastic differential inclusion systems with time delay. A nonlinear feedback law is established by using convex hull quadratic Lyapunov function such that the cl... This paper is concerned with robust stabilization of stochastic differential inclusion systems with time delay. A nonlinear feedback law is established by using convex hull quadratic Lyapunov function such that the closed-loop system is exponentially stable in mean square. Sufficient conditions for the existence of the feedback are obtained via linear matrix inequalities (LMIs). An example is given to illustrate the effectiveness of the proposed method. 展开更多
关键词 Robust stabilization Stochastic differential inclusions Time delay convex hull lyapunov functions Linear matrix inequalities
原文传递
Tracking control of the linear differential inclusion
4
作者 Jun HUANG Zheng-zhi HAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第6期464-469,共6页
The tracking control of linear differential inclusion is discussed. First, the definition of uniformly ultimate boundedness for linear differential inclusion is given. Then, a feedback law is constructed by using the ... The tracking control of linear differential inclusion is discussed. First, the definition of uniformly ultimate boundedness for linear differential inclusion is given. Then, a feedback law is constructed by using the convex hull Lyapunov function. The sufficient condition is given to guarantee the tracking error system uniformly ultimately bounded. Finally, a numerical example is simulated to illustrate the effectiveness of this control design. 展开更多
关键词 Linear differential inclusions Tracking control convex hull lyapunov functions Uniformly ultimate boundedness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部