期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network
1
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
下载PDF
Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net
2
作者 Fadl Dahan 《Intelligent Automation & Soft Computing》 2024年第2期381-395,共15页
In the domain ofmedical imaging,the accurate detection and classification of brain tumors is very important.This study introduces an advanced method for identifying camouflaged brain tumors within images.Our proposed ... In the domain ofmedical imaging,the accurate detection and classification of brain tumors is very important.This study introduces an advanced method for identifying camouflaged brain tumors within images.Our proposed model consists of three steps:Feature extraction,feature fusion,and then classification.The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques,using the ResNet50 Convolutional Neural Network(CNN)architecture.So the focus is to extract robust feature fromMRI images,particularly emphasizingweighted average features extracted fromthe first convolutional layer renowned for their discriminative power.To enhance model robustness,we introduced a novel feature fusion technique based on the Marine Predator Algorithm(MPA),inspired by the hunting behavior of marine predators and has shown promise in optimizing complex problems.The proposed methodology can accurately classify and detect brain tumors in camouflage images by combining the power of color transformations,deep learning,and feature fusion via MPA,and achieved an accuracy of 98.72%on a more complex dataset surpassing the existing state-of-the-art methods,highlighting the effectiveness of the proposed model.The importance of this research is in its potential to advance the field ofmedical image analysis,particularly in brain tumor diagnosis,where diagnoses early,and accurate classification are critical for improved patient results. 展开更多
关键词 Camouflage brain tumor image classification weighted convolutional features CNN ResNet50
下载PDF
Instance Retrieval Using Region of Interest Based CNN Features 被引量:3
3
作者 Jingcheng Chen Zhili Zhou +1 位作者 Zhaoqing Pan Ching-nung Yang 《Journal of New Media》 2019年第2期87-99,共13页
Recently, image representations derived by convolutional neural networks(CNN) have achieved promising performance for instance retrieval, and they outperformthe traditional hand-crafted image features. However, most o... Recently, image representations derived by convolutional neural networks(CNN) have achieved promising performance for instance retrieval, and they outperformthe traditional hand-crafted image features. However, most of existing CNN-based featuresare proposed to describe the entire images, and thus they are less robust to backgroundclutter. This paper proposes a region of interest (RoI)-based deep convolutionalrepresentation for instance retrieval. It first detects the region of interests (RoIs) from animage, and then extracts a set of RoI-based CNN features from the fully-connected layerof CNN. The proposed RoI-based CNN feature describes the patterns of the detected RoIs,so that the visual matching can be implemented at image region-level to effectively identifytarget objects from cluttered backgrounds. Moreover, we test the performance of theproposed RoI-based CNN feature, when it is extracted from different convolutional layersor fully-connected layers. Also, we compare the performance of RoI-based CNN featurewith those of the state-of-the-art CNN features on two instance retrieval benchmarks.Experimental results show that the proposed RoI-based CNN feature provides superiorperformance than the state-of-the-art CNN features for in-stance retrieval. 展开更多
关键词 Image retrieval instance retrieval ROI CNN convolutional layer convolutional feature maps
下载PDF
Robust Visual Tracking Based on Convolutional Features with Illumination and Occlusion Handing 被引量:7
4
作者 Kang Li Fa-Zhi He Hai-Ping Yu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第1期223-236,共14页
Visual tracking is an important area in computer vision. How to deal with illumination and occlusion problems is a challenging issue. This paper presents a novel and efficient tracking algorithm to handle such problem... Visual tracking is an important area in computer vision. How to deal with illumination and occlusion problems is a challenging issue. This paper presents a novel and efficient tracking algorithm to handle such problems. On one hand, a target's initial appearance always has clear contour, which is light-invariant and robust to illumination change. On the other hand, features play an important role in tracking, among which convolutional features have shown favorable performance. Therefore, we adopt convolved contour features to represent the target appearance. Generally speaking, first-order derivative edge gradient operators are efficient in detecting contours by convolving them with images. Especially, the Prewitt operator is more sensitive to horizontal and vertical edges, while the Sobel operator is more sensitive to diagonal edges. Inherently, Prewitt and Sobel are complementary with each other. Technically speaking, this paper designs two groups of Prewitt and Sobel edge detectors to extract a set of complete convolutional features, which include horizontal, vertical and diagonal edges features. In the first frame, contour features are extracted from the target to construct the initial appearance model. After the analysis of experimental image with these contour features, it can be found that the bright parts often provide more useful information to describe target characteristics. Therefore, we propose a method to compare the similarity between candidate sample and our trained model only using bright pixels, which makes our tracker able to deal with partial occlusion problem. After getting the new target, in order to adapt appearance change, we propose a corresponding online strategy to incrementally update our model. Experiments show that convolutional features extracted by well-integrated Prewitt and Sobel edge detectors can be eff^cient enough to learn robust appearance model. Numerous experimental results on nine challenging sequences show that our proposed approach is very effective and robust in comparison with the state-of-the-art trackers. 展开更多
关键词 visual tracking convolutional feature gradient operator online learning particle filter
原文传递
A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions 被引量:8
5
作者 JIN YanRui QIN ChengJin +2 位作者 ZHANG ZhiNan TAO JianFeng LIU ChengLiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2551-2563,共13页
Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has... Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has two limitations:(1)the complex and changeable environmental noise,which cannot ensure the high-performance diagnosis of the model in different noise domains and(2)the possibility of multiple faults occurring simultaneously,which brings challenges to the model diagnosis.This paper presents a novel anti-noise multi-scale convolutional neural network(AM-CNN)for solving the issue of compound fault diagnosis under different intensity noises.First,we propose a residual pre-processing block according to the principle of noise superposition to process the input information and present the residual loss to construct a new loss function.Additionally,considering the strong coupling of input information,we design a multi-scale convolution block to realize multi-scale feature extraction for enhancing the proposed model’s robustness and effectiveness.Finally,a multi-label classifier is utilized to simultaneously distinguish multiple bearing faults.The proposed AM-CNN is verified under our collected compound fault dataset.On average,AM-CNN improves 39.93%accuracy and 25.84%F1-macro under the no-noise working condition and 45.67%accuracy and 27.72%F1-macro under different intensity noise working conditions compared with the existing methods.Furthermore,the experimental results show that AM-CNN can achieve good cross-domain performance with 100%accuracy and 100%F1-macro.Thus,AM-CNN has the potential to be an accurate and stable fault diagnosis tool. 展开更多
关键词 ANTI-NOISE residual pre-processing block bearing compound fault multi-label classifier multi-scale convolution feature extraction
原文传递
Two-level hierarchical feature learning for image classification 被引量:3
6
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning Feature learning Deep convolutional neural network Hierarchical classification Spectral clustering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部