期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Yetter-Drinfel'd Module and Convolution Module
1
作者 张良云 王栓宏 《Northeastern Mathematical Journal》 CSCD 2002年第1期13-18,共6页
In this paper, we first give a sufficient and necessary condition for a Hopf algebra to be a Yetter-Drinfel'd module, and prove that the finite dual of a Yetter-Drinfel'd module is still a Yetter-Drinfel'd... In this paper, we first give a sufficient and necessary condition for a Hopf algebra to be a Yetter-Drinfel'd module, and prove that the finite dual of a Yetter-Drinfel'd module is still a Yetter-Drinfel'd module. Finally, we introduce a concept of convolution module. 展开更多
关键词 braided Hopf algebra convolution algebra convolution module Yetter-Drinfel'd module
下载PDF
ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module 被引量:9
2
作者 Yudong Zhang Xin Zhang Weiguo Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1037-1058,共22页
Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed t... Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed toavoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structureof which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracyof our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: Thisproposed ANC method is superior to 9 state-of-the-art approaches. 展开更多
关键词 Deep learning convolutional block attention module attention mechanism COVID-19 explainable diagnosis
下载PDF
MobileNet network optimization based on convolutional block attention module 被引量:3
3
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning
下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:1
4
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
下载PDF
Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning 被引量:2
5
作者 Yihuai Lou Lukun Wu +4 位作者 Lin Liu Kai Yu Naihao Liu Zhiguo Wang Wei Wang 《Artificial Intelligence in Geosciences》 2022年第1期192-202,共11页
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,... Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models. 展开更多
关键词 Irregularly sampled seismic data reconstruction Deep learning U-Net Discrete wavelet transform convolutional block attention module
下载PDF
Improving Yolo5 for Real-Time Detection of Small Targets in Side Scan Sonar Images
6
作者 WANG Jianjun WANG Qi +2 位作者 GAO Guocheng QIN Ping HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1551-1562,共12页
Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the t... Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the target for observers.The target feature information of an SSS image is similar to the background information,and a small target has less pixel information;therefore,accu-rately identifying and locating small targets in SSS images is challenging.We collect the SSS images of iron metal balls(with a diameter of 1m)and rocks to solve the problem of target misclassification.Thus,the dataset contains two types of targets,namely,‘ball’and‘rock’.With the aim to enable AUVs to accurately and automatically identify small underwater targets in SSS images,this study designs a multisize parallel convolution module embedded in state-of-the-art Yolo5.An attention mechanism transformer and a convolutional block attention module are also introduced to compare their contributions to small target detection accuracy.The performance of the proposed method is further evaluated by taking the lightweight networks Mobilenet3 and Shufflenet2 as the backbone network of Yolo5.This study focuses on the performance of convolutional neural networks for the detection of small targets in SSS images,while another comparison experiment is carried out using traditional HOG+SVM to highlight the neural network’s ability.This study aims to improve the detection accuracy while ensuring the model efficiency to meet the real-time working requirements of AUV target detection. 展开更多
关键词 side scan sonar images autonomous underwater vehicle multisize parallel convolution module attention mechanism
下载PDF
基于注意力特征融合的SqueezeNet细粒度图像分类模型 被引量:8
7
作者 李明悦 何乐生 +1 位作者 雷晨 龚友梅 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期868-876,共9页
针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级... 针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级卷积神经网络,对其微调后在公开的细粒度图像数据集上进行验证,经比较后选择了模型性能最佳的SqueezeNet作为图像的特征提取器;然后将两个具有注意力机制的卷积模块嵌入至SqueezeNet网络的每个Fire模块;接着提取出改进后的SqueezeNet的中间层特征进行双线性融合形成新的注意力特征图,与网络的全局特征再融合后分类;最后通过实验对比和可视化分析,网络嵌入Convolution Block Attention Module(CBAM)模块的分类准确率在鸟类、汽车、飞机数据集上依次提高了8.96%、4.89%和5.85%,嵌入Squeeze-and-Excitation(SE)模块的分类准确率依次提高了9.81%、4.52%和2.30%,且新模型在参数量、运行效率等方面比现有算法更具优势. 展开更多
关键词 细粒度图像分类 轻量级卷积神经网络 SqueezeNet 注意力机制 convolution Block Attention module(CBAM) Squeeze-and-Excitation(SE) 特征融合
下载PDF
A Multi-Category Brain Tumor Classification Method Bases on Improved ResNet50 被引量:1
8
作者 Linguo Li Shujing Li Jian Su 《Computers, Materials & Continua》 SCIE EI 2021年第11期2355-2366,共12页
Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditi... Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditional convolutional neural network(CNN)structure can only accept limited local context information.And most of the current methods only focus on the classification of benign and malignant brain tumors,multi classification of brain tumors is not common.In response to these shortcomings,considering that convolution kernels of different sizes can extract more comprehensive features,we put forward the multi-size convolutional kernel module.And considering that the combination of average-pooling with max-pooling can realize the complementary of the high-dimensional information extracted by the two structures,we proposed the dual-channel pooling layer.Combining the two structures with ResNet50,we proposed an improved ResNet50 CNN for the applications in multi-category brain tumor classification.We used data enhancement before training to avoid model over fitting and used five-fold cross-validation in experiments.Finally,the experimental results show that the network proposed in this paper can effectively classify healthy brain,meningioma,diffuse astrocytoma,anaplastic oligodendroglioma and glioblastoma. 展开更多
关键词 Brain tumor convolutional neural network multi-size convolutional kernel module dual-channel pooling layer ResNet50
下载PDF
Classifying Hematoxylin and Eosin Images Using a Super-Resolution Segmentor and a Deep Ensemble Classifier
9
作者 P.Sabitha G.Meeragandhi 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1983-2000,共18页
Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for exper... Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for experienced pathologists,due to the non-uniform illumination and artifacts.Albeit several Machine Learning(ML)and Deep Learning(DL)approaches are employed to increase the performance of automatic liver cancer diagnostic systems,the classi-fication accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations.In this work,we present a new Ensemble Classifier(hereafter called ECNet)to classify the H&E stained liver histopathology images effectively.The proposed model employs a Dropout Extreme Learning Machine(DrpXLM)and the Enhanced Convolutional Block Attention Modules(ECBAM)based residual network.ECNet applies Voting Mechanism(VM)to integrate the decisions of individual classifiers using the average of probabilities rule.Initially,the nuclei regions in the H&E stain are seg-mented through Super-resolution Convolutional Networks(SrCN),and then these regions are fed into the ensemble DL network for classification.The effectiveness of the proposed model is carefully studied on real-world datasets.The results of our meticulous experiments on the Kasturba Medical College(KMC)liver dataset reveal that the proposed ECNet significantly outperforms other existing classifica-tion networks with better accuracy,sensitivity,specificity,precision,and Jaccard Similarity Score(JSS)of 96.5%,99.4%,89.7%,95.7%,and 95.2%,respectively.We obtain similar results from ECNet when applied to The Cancer Genome Atlas Liver Hepatocellular Carcinoma(TCGA-LIHC)dataset regarding accuracy(96.3%),sensitivity(97.5%),specificity(93.2%),precision(97.5%),and JSS(95.1%).More importantly,the proposed ECNet system consumes only 12.22 s for training and 1.24 s for testing.Also,we carry out the Wilcoxon statistical test to determine whether the ECNet provides a considerable improvement with respect to evaluation metrics or not.From extensive empirical analysis,we can conclude that our ECNet is the better liver cancer diagnostic model related to state-of-the-art classifiers. 展开更多
关键词 convolutional block attention modules dropout ELM ensemble classifier liver cancer segmentation voting mechanism
下载PDF
Foreground Segmentation Network with Enhanced Attention
10
作者 姜锐 朱瑞祥 +1 位作者 蔡萧萃 苏虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第3期360-369,共10页
Moving object segmentation (MOS) is one of the essential functions of the vision system of all robots,including medical robots. Deep learning-based MOS methods, especially deep end-to-end MOS methods, are actively inv... Moving object segmentation (MOS) is one of the essential functions of the vision system of all robots,including medical robots. Deep learning-based MOS methods, especially deep end-to-end MOS methods, are actively investigated in this field. Foreground segmentation networks (FgSegNets) are representative deep end-to-endMOS methods proposed recently. This study explores a new mechanism to improve the spatial feature learningcapability of FgSegNets with relatively few brought parameters. Specifically, we propose an enhanced attention(EA) module, a parallel connection of an attention module and a lightweight enhancement module, with sequentialattention and residual attention as special cases. We also propose integrating EA with FgSegNet_v2 by taking thelightweight convolutional block attention module as the attention module and plugging EA module after the twoMaxpooling layers of the encoder. The derived new model is named FgSegNet_v2 EA. The ablation study verifiesthe effectiveness of the proposed EA module and integration strategy. The results on the CDnet2014 dataset,which depicts human activities and vehicles captured in different scenes, show that FgSegNet_v2 EA outperformsFgSegNet_v2 by 0.08% and 14.5% under the settings of scene dependent evaluation and scene independent evaluation, respectively, which indicates the positive effect of EA on improving spatial feature learning capability ofFgSegNet_v2. 展开更多
关键词 human-computer interaction moving object segmentation foreground segmentation network enhanced attention convolutional block attention module
原文传递
Hybrid CBAM-EfficientNetV2 Fire Image Recognition Method with Label Smoothing in Detecting Tiny Targets
11
作者 Bo Wang Guozhong Huang +3 位作者 Haoxuan Li Xiaolong Chen Lei Zhang Xuehong Gao 《Machine Intelligence Research》 EI 2024年第6期1145-1161,共17页
Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning.Aiming at the problems of low accuracy of existing fire recognition and high error rate of... Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning.Aiming at the problems of low accuracy of existing fire recognition and high error rate of tiny target detection,this study proposed a fire recognition model based on a channel space attention mechanism.First,the convolutional block attention module(CBAM)is intro-duced into the first and last convolutional layers EfficientNetV2,which shows strong feature extraction ability and high computational efficiency as the backbone network.In terms of channel and space aspects,the weights in the feature layer are increased,which enhances the semantic information of flame smoke features and makes the model pay more attention to the feature information of fire images.Then,label smoothing based on the cross-entropy loss function is introduced into this study to avoid predicting labels too confidently in the training process to improve the generalization ability of the recognition model.The experimental results show that the fire image re-cognition accuracy based on the CBAM-EfficientNetV2 model reaches 98.9%.The accuracy of smoke image recognition can reach 98.5%.The accuracy of small target detection can reach 96.1%.At the same time,we compared the existing methods and found that the proposed method achieved higher accuracy,precision,recall,and F1-score.Finally,the fire image results are visualized using the Grad-CAM technique,which makes the model more effective and more intuitive in detecting tiny targets. 展开更多
关键词 Fire recognition tiny target detection efficientNetV2 label smoothing convolutional block attention module(CBAM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部