滚动轴承广泛应用于各类大型机械设备中,发挥着支撑机械旋转体、降低摩擦阻力、保证回转精度的重要作用。由于滚动轴承使用的广泛性和关键性,滚动轴承的实时状态分析对于保证机械设备的正常运行具有重要意义,目前基于振动信号分析的智...滚动轴承广泛应用于各类大型机械设备中,发挥着支撑机械旋转体、降低摩擦阻力、保证回转精度的重要作用。由于滚动轴承使用的广泛性和关键性,滚动轴承的实时状态分析对于保证机械设备的正常运行具有重要意义,目前基于振动信号分析的智能故障诊断方法在该领域被广泛使用。采用多尺度卷积神经网络和长短时记忆网络(multi-scale convolutional neural network and long shor-term memory,MCNN-LSTMMCNN-LSTM)模型进行轴承故障诊断。但在分类问题中,均方误差损失函数会发生梯度消失,导致模型初期训练学习速率较低。因此对其损失函数进行改进,采用交叉熵损失函数进行训练,可有效避免梯度消失问题,提高模型学习速率。实验采用凯斯西储大学(Case Western Reserve University,CWRU)公共数据集进行模型的训练与测试,实验结果说明采用改进的交叉熵损失函数不仅能够提高模型的学习速率,还实现了更高的预测准确率与F1分数。展开更多
文摘滚动轴承广泛应用于各类大型机械设备中,发挥着支撑机械旋转体、降低摩擦阻力、保证回转精度的重要作用。由于滚动轴承使用的广泛性和关键性,滚动轴承的实时状态分析对于保证机械设备的正常运行具有重要意义,目前基于振动信号分析的智能故障诊断方法在该领域被广泛使用。采用多尺度卷积神经网络和长短时记忆网络(multi-scale convolutional neural network and long shor-term memory,MCNN-LSTMMCNN-LSTM)模型进行轴承故障诊断。但在分类问题中,均方误差损失函数会发生梯度消失,导致模型初期训练学习速率较低。因此对其损失函数进行改进,采用交叉熵损失函数进行训练,可有效避免梯度消失问题,提高模型学习速率。实验采用凯斯西储大学(Case Western Reserve University,CWRU)公共数据集进行模型的训练与测试,实验结果说明采用改进的交叉熵损失函数不仅能够提高模型的学习速率,还实现了更高的预测准确率与F1分数。