期刊文献+
共找到1,220篇文章
< 1 2 61 >
每页显示 20 50 100
A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants
1
作者 Shaoxiong Wu Ruoxin Li +6 位作者 Xiaofeng Tao Hailong Wu Ping Miao Yang Lu Yanyan Lu Qi Liu Li Pan 《Computers, Materials & Continua》 SCIE EI 2024年第11期3063-3077,共15页
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati... Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods. 展开更多
关键词 Times series forecasting long short term memory network(LSTM) time convolutional network(TCN) wavelet decomposition
下载PDF
Feature identification in complex fluid flows by convolutional neural networks
2
作者 Shizheng Wen Michael W.Lee +2 位作者 Kai M.Kruger Bastos Ian K.Eldridge-Allegra Earl H.Dowell 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期447-454,共8页
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit... Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers. 展开更多
关键词 Subsonic buffet flows Feature identification convolutional neural network long-short term memory
下载PDF
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
3
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation long-short term memory(LSTM)network Principal component analysis Stability assessment Baihetan Arch Dam
下载PDF
Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling
4
作者 Fei Wang Zhen Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2315-2329,共15页
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th... Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively. 展开更多
关键词 Intrusion detection deep learning spiral convolution long and short term memory networks 1D-spiral convolution
下载PDF
基于Convolutional-LSTM的蛋白质亚细胞定位研究 被引量:2
5
作者 王春宇 徐珊珊 +2 位作者 郭茂祖 车凯 刘晓燕 《计算机科学与探索》 CSCD 北大核心 2019年第6期982-989,共8页
蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝... 蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝试使用卷积神经网络(convolutional neural network,CNN)、长短期记忆神经网络(long short-term memory,LSTM)两种模型挖掘氨基酸序列所包含的信息,从而进行亚细胞定位的预测。随后构建了基于卷积的长短期记忆网络(Convolutional-LSTM)的集成模型进行亚细胞定位。首先通过卷积神经网络对蛋白质数据进行特征抽取,随后进行特征组合,并将其送入长短期记忆神经网络进行特征表征学习,得到亚细胞定位结果。使用该模型能达到0.816 5的分类准确率,比传统方法有明显提升。 展开更多
关键词 蛋白质亚细胞定位 卷积神经网络(CNN) 长短期记忆神经网络(LSTM) 分类
下载PDF
基于字词向量融合的民航智慧监管短文本分类 被引量:1
6
作者 王欣 干镞锐 +2 位作者 许雅玺 史珂 郑涛 《中国安全科学学报》 CAS CSCD 北大核心 2024年第2期37-44,共8页
为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题... 为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题。为解决类别不平衡问题,采用数据增强算法在原始文本上进行变换,生成新的样本,使各个类别的样本数量更加均衡。将字向量和词向量按字融合拼接,得到具有词特征信息的字向量。将字词融合的向量分别送入到文本卷积神经网络(TextCNN)和双向长短期记忆(BiLSTM)模型中进行不同维度的特征提取,从局部的角度和全局的角度分别提取特征,并在民航监管事项检查记录数据集上进行试验。结果表明:该模型准确率为0.9837,F 1值为0.9836。与一些字嵌入模型和词嵌入模型相对比,准确率提升0.4%。和一些常用的单通道模型相比,准确率提升3%,验证了双通道模型提取的特征具有全面性和有效性。 展开更多
关键词 字词向量融合 民航监管 短文本 文本卷积神经网络(TextCNN) 双向长短期记忆(BiLSTM)
下载PDF
结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究 被引量:1
7
作者 王东风 刘婧 +2 位作者 黄宇 史博韬 靳明月 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期443-450,共8页
为了提高模型预测性能,提出一种综合太阳辐射模型及深度学习的光伏功率预测模型。首先,利用太阳辐射机理建立太阳辐射模型(SRM),估算出水平面上总辐射值,再由斜面辐照度转换方法计算出光伏组件所接收的斜面辐射值。其次,通过皮尔逊相关... 为了提高模型预测性能,提出一种综合太阳辐射模型及深度学习的光伏功率预测模型。首先,利用太阳辐射机理建立太阳辐射模型(SRM),估算出水平面上总辐射值,再由斜面辐照度转换方法计算出光伏组件所接收的斜面辐射值。其次,通过皮尔逊相关分析法筛选出对光伏功率影响较大的主要因素,将斜面辐射计算值及主要影响因素作为输入,采用卷积神经网络(CNN)和长短期记忆网络(LSTM)建立光伏功率SRM-CNN-LSTM预测模型。分别利用春夏秋冬四季典型日的数据开展对比实验,结果表明:与几种其他方法相比,该文方法具有更好的预测效果。 展开更多
关键词 光伏发电 预测 太阳辐射 神经网络 卷积神经网络 长短期记忆网络
下载PDF
基于注意力机制与LSTM-CCN的月降水量预测 被引量:1
8
作者 周祥 张世明 +1 位作者 苏林鹏 张守平 《人民长江》 北大核心 2024年第6期129-135,共7页
针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方... 针对现有月降水量预测方法预测准确性不高的问题,提出一种基于注意力机制与LSTM-CCN的月降水量预测方法。首先,利用长短时记忆神经网络(long short-term memory neural network,LSTM)提取气象数据在时间维度的特征分布,从时间相关性方面捕获相邻时间段或长距离气象数据段中的统计分布;其次,利用因果卷积神经网络(causal convolutional network,CCN)将气象数据映射到空间维度,深层次地从空间维度捕获气象数据在空间中的特征统计分布;再次,以并联的方式将时间和空间特征作为交叉注意力网络的输入,构造融合的时空特征;最后,以长短时记忆神经网络构造解码器,并将融合的时空特征作为解码器的输入,预测的月降水量作为输出。选取河南省新乡市2001~2017年数据集进行测试,结果表明:所提出方法的均方根误差仅为13.08 mm,相比主流方法具有更低的预测误差。研究成果可为提高气象预测的准确性和实用性提供参考。 展开更多
关键词 月降水量预测 多层注意力机制 因果卷积神经网络 长短时记忆神经网络
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
9
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(LSTM) 注意力机制 卷积神经网络(CNN)
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
10
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于CNN-LSTM的机床滚动轴承性能退化趋势和寿命预测 被引量:1
11
作者 姜广君 杨金森 穆东明 《机床与液压》 北大核心 2024年第6期184-189,共6页
滚动轴承作为机床主轴的关键部件,其剩余寿命预测直接决定着整机设备的剩余寿命。若不能及时地预知滚动轴承的健康状态或损伤情况,不仅会影响维修策略的制定,还会造成级联故障,易造成机床灾难性的事故。针对大数据下滚动轴承振动信号的... 滚动轴承作为机床主轴的关键部件,其剩余寿命预测直接决定着整机设备的剩余寿命。若不能及时地预知滚动轴承的健康状态或损伤情况,不仅会影响维修策略的制定,还会造成级联故障,易造成机床灾难性的事故。针对大数据下滚动轴承振动信号的自适应故障特征提取和智能诊断问题,构建卷积神经网络和长短期记忆网络(CNN-LSTM)相结合的寿命预测模型,它可以避免人工参与的影响,实现网络的互补优势。对滚动轴承的退化状态以及剩余寿命进行预测,并与卷积神经网络(CNN)、长短时记忆神经网络(LSTM)进行对比实验。结果表明:所提方法CNN-LSTM有着较高的预测准确度。 展开更多
关键词 卷积神经网络 长短时神经网络 剩余寿命 滚动轴承
下载PDF
基于CF-CNN-LSTM模型的滑坡易发性评价
12
作者 王守华 王睿菘 +3 位作者 孙希延 刘小明 卢伟萍 林子安 《自然灾害学报》 CSCD 北大核心 2024年第5期84-95,共12页
针对滑坡灾害样本选择以及深度学习模型中的长期依赖、梯度消失、退化等问题,提出了一种结合确定性系数法(certainty factor,CF)、卷积神经网络(convolution neural network,CNN)模型和长短期记忆神经网络(long short-term memory,LSTM... 针对滑坡灾害样本选择以及深度学习模型中的长期依赖、梯度消失、退化等问题,提出了一种结合确定性系数法(certainty factor,CF)、卷积神经网络(convolution neural network,CNN)模型和长短期记忆神经网络(long short-term memory,LSTM)模型的CF-CNN-LSTM深度学习模型。以广西壮族自治区梧州市辖区为研究区,选取高程、坡度和坡向等13种滑坡评价因子,采用CF-CNN-LSTM模型对研究区进行滑坡易发性评价,并与CNN模型、LSTM模型、循环神经网络模型和逻辑回归模型进行对比,利用受试者工作特征曲线(receiver operating characteristic,ROC)、整体准确率等6种方法对模型预测精度进行评估。结果表明:CF-CNN-LSTM模型的ROC曲线的曲线下面积(area under curve,AUC)值为0.953,高于其它单一模型,同时其它5项评估指标均优于单一模型,证明CF-CNN-LSTM模型具有更高的精度,可用于梧州市辖区的滑坡易发性评价工作,能够对该区域的滑坡风险管理提供科学的建议。 展开更多
关键词 滑坡 易发性评价 确定性系数 卷积神经网络 长短期记忆网络
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:1
13
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
基于CBAM-LSTM的风电集群功率短期预测方法 被引量:1
14
作者 张哲 王勃 《东北电力大学学报》 2024年第1期1-8,共8页
风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolut... 风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolutional Block Attention Module, CBAM)和长短时记忆网络(Long Short-Term Memory, LSTM)相结合的模型。首先,使用CBAM对风电功率时间序列数据特征和数值天气预报中蕴含的空间特性进行提取,该模块能够自适应地学习时间和空间上的重要特征;然后,将提取的特征输入到LSTM层结构中进行功率预测。为了验证所提方法的有效性,使用中国吉林省某风电场的数据集进行验证,实验结果表明,与其他功率预测方法相比,文中所提方法平均绝对误差(Mean Absolute Error, MAE)平均降低2.67%;决定系数(R-Square, R2)平均提高23%;均方根误差(Root Mean Square Error, RMSE)平均降低2.69%。 展开更多
关键词 风电功率 卷积块注意力机制 长短时记忆神经网络 短期风电集群功率预测
下载PDF
基于链接关系预测的弯曲密集型商品文本检测
15
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
下载PDF
基于ConvLSTM-CNN预测太平洋长鳍金枪鱼时空分布趋势
16
作者 杜艳玲 马玉玲 +3 位作者 汪金涛 陈珂 林泓羽 陈刚 《海洋通报》 CAS CSCD 北大核心 2024年第2期174-187,共14页
海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperatu... 海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperature,SST)、海表面盐度(Sea Surface Salinity,SSS)、初级生产力(Primary Productivity,PP)和溶解氧浓度(Dissolved Oxygen Concentration,DO),提出了一种融合卷积长短期记忆网络(Convolutional Long Short-Term Memory Networks,ConvLSTM)和卷积神经网络(Convolutional Neural Networks,CNN)的渔场时空分布预测模型。该模型引入特征提取模块,对时空因子进行编码,提取时空特征信息,同时采用CNN提取海洋环境变量的抽象特征,采用ConvLSTM提取渔业数据的高层时空关联信息,最后融合多种特征对渔场时空演变趋势进行预测。结果表明,模型的均方根误差为0.1036,较随机森林、BP神经网络和长短期记忆网络(Long Short Term Memory,LSTM)等传统渔场预报模型的预测误差降低15%~40%,预测的高产渔区与实际作业的高渔获量区匹配度为89%。该研究构建的渔场时空预测模型能够准确地预测出太平洋长鳍金枪鱼的时空分布,为太平洋长鳍金枪鱼的延绳钓渔业提供科学参考依据。 展开更多
关键词 长鳍金枪鱼 时空分布 融合卷积长短期记忆网络 卷积神经网络 太平洋
下载PDF
智能仓储交通信号与多AGV路径规划协同控制方法 被引量:1
17
作者 司明 邬伯藩 +1 位作者 胡灿 邢伟强 《计算机工程与应用》 CSCD 北大核心 2024年第11期290-297,共8页
针对智能仓储多AGV(automated guided vehicle)路径规划实时性差,障碍物识别能力弱,多AGV碰撞、死锁和拥堵等问题,提出了一种智能仓储交通信号控制与多AGV路径规划协同控制方法,将交通信号与多AGV路径规划视为一个整体,设计一种交通信... 针对智能仓储多AGV(automated guided vehicle)路径规划实时性差,障碍物识别能力弱,多AGV碰撞、死锁和拥堵等问题,提出了一种智能仓储交通信号控制与多AGV路径规划协同控制方法,将交通信号与多AGV路径规划视为一个整体,设计一种交通信号与多AGV路径规划协同控制框架,并提出LS-A3C(long short-asynchronous advantage actor-critic)算法和Bi-LSTM-CBAM(bi-long short-term memory-convolutional block attention module)算法作为框架的核心算法。LS-A3C算法使用长短时编码器和注意力机制分别对交通信号的长期信息和短期信息进行编码,以学习元特征表示,并使用A3C框架计算元Q值和控制策略,实现交通信号时间自适应AGV流量,解决多AGV碰撞、死锁和拥堵等问题。Bi-LSTM-CBAM算法通过计算本时刻和前置时刻状态特征,对输出结果进行拼接处理,可以有效解决神经网络梯度消失和爆炸的问题,提高AGV路径规划实时性;引入注意力机制模块CBAM,根据输入信息重要程度分配权重,加强AGV对障碍物识别能力。在Sumo和Gazebo联合仿真平台进行仿真实验,实验结果表明,该协同控制方法使AGV碰撞、死锁及拥堵情况明显降低,障碍物识别能力显著提高,路径规划实时性大幅增强,达到提升AGV作业效率的目的。 展开更多
关键词 智能仓储 深度强化学习 路径规划 Bi-LSTM A3C CBAM
下载PDF
基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法
18
作者 吴哲夫 闫鑫悦 +2 位作者 施汉银 龚树凤 方路平 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1754-1763,共10页
目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(C... 目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)串联的毫米波雷达人体动作识别方法。首先对原始的雷达回波信号复数采样数据(I/Q)进行帧差处理,以消除静态干扰,并将其转换为幅度/相位(A/P)的数据格式;然后将帧差后的I/Q和A/P数据分别输入单流的CNN-BiLSTM网络,提取人体动作的空间和时间特征,最后进行双流网络的融合以增强特征的交互性,提高识别准确率。实验结果表明,该方法数据预处理简单,并充分利用了动作数据的帧间相关性,模型收敛快,识别准确率可以达到99%,是一种快速有效的人体动作识别方法。 展开更多
关键词 雷达目标识别 人体动作识别 卷积神经网络 双向长短时记忆网络
下载PDF
基于迁移学习和CNN-LSTM的水轮机空化状态识别方法
19
作者 刘忠 周泽华 +2 位作者 邹淑云 刘圳 乔帅程 《动力工程学报》 CAS CSCD 北大核心 2024年第10期1533-1540,共8页
针对水轮机空化声发射信号中包含较多噪声、依赖人工降噪与特征提取以及深度学习模型准确率极度依赖海量训练数据的问题,提出一种基于迁移学习和卷积神经网络-长短时记忆网络(CNN-LSTM)的水轮机空化状态识别方法。首先,将数据输入CNN中... 针对水轮机空化声发射信号中包含较多噪声、依赖人工降噪与特征提取以及深度学习模型准确率极度依赖海量训练数据的问题,提出一种基于迁移学习和卷积神经网络-长短时记忆网络(CNN-LSTM)的水轮机空化状态识别方法。首先,将数据输入CNN中提取隐含特征;然后,在LSTM中提取特征隐含的时序信息并输出空化类型,通过训练网络参数建立基于CNN-LSTM的空化状态识别模型;最后,引入迁移学习对类似工况进行空化状态识别。结果表明:该模型能准确识别出3种不同的水轮机空化类型,其平均识别准确率达到较高水平;与传统深度学习模型相比,该模型在极少样本学习任务中的识别准确率具有明显优势。 展开更多
关键词 水轮机空化 声发射信号 卷积神经网络 迁移学习 长短期记忆网络
下载PDF
基于CNN-LSTM和卷复制方法的高可用系统设计方法
20
作者 张焱 李新建 +4 位作者 王畅 章建军 陈小虎 邹鑫灏 严智 《南京邮电大学学报(自然科学版)》 北大核心 2024年第4期114-121,共8页
针对单机服务器存在的单点故障问题,以及主备双机中存在的逻辑故障导致数据丢失的问题,设计了一种基于卷积和长短期记忆神经网络(CNN-LSTM)和卷复制方法的HA(High Availability)系统。系统至少包含两个节点,一个主节点以及一个或多个备... 针对单机服务器存在的单点故障问题,以及主备双机中存在的逻辑故障导致数据丢失的问题,设计了一种基于卷积和长短期记忆神经网络(CNN-LSTM)和卷复制方法的HA(High Availability)系统。系统至少包含两个节点,一个主节点以及一个或多个备用节点,主节点和备节点之间支持主备切换。每个服务器节点上包含4个模块,分别是负责接收配置信息与读写请求的代理模块;进行磁盘读写操作和重定向读写的磁盘I/O(输入输出)模块;负责主备节点间备份快照、映射表、数据块复制的卷复制模块以及基于CNN-LSTM进行状态检测的高可用模块。实验表明,该系统不仅可以解决单点故障问题,也可以解决主备双机集群中无法解决的逻辑错误问题;同时基于CNN-LSTM方法,自动针对服务器的运行健康状态进行分析和预测,可以根据预测结果自动通知管理员进行处理或自动进行主备切换。 展开更多
关键词 卷复制 数据丢失 快照 CNN-LSTM 高可用系统
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部