期刊文献+
共找到1,823篇文章
< 1 2 92 >
每页显示 20 50 100
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
1
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
2
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model convolutional neural network(CNN) Finite Element Method(FEM)
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
3
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
4
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
5
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) convolutional neural networks(CNNs) Evaluation of error
下载PDF
Research on Plant Species Identification Based on Improved Convolutional Neural Network
6
作者 Chuangchuang Yuan Tonghai Liu +2 位作者 Shuang Song Fangyu Gao Rui Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第4期1037-1058,共22页
Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requiremen... Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requirements in terms of recognition accuracy.Therefore,ShuffleNetV2 was improved by combining the current hot concern mechanism,convolution kernel size adjustment,convolution tailoring,and CSP technology to improve the accuracy and reduce the amount of computation in this study.Six convolutional neural network models with sufficient trainable parameters were designed for differentiation learning.The SGD algorithm is used to optimize the training process to avoid overfitting or falling into the local optimum.In this paper,a conventional plant image dataset TJAU10 collected by cell phones in a natural context was constructed,containing 3000 images of 10 plant species on the campus of Tianjin Agricultural University.Finally,the improved model is compared with the baseline version of the model,which achieves better results in terms of improving accuracy and reducing the computational effort.The recognition accuracy tested on the TJAU10 dataset reaches up to 98.3%,and the recognition precision reaches up to 93.6%,which is 5.1%better than the original model and reduces the computational effort by about 31%compared with the original model.In addition,the experimental results were evaluated using metrics such as the confusion matrix,which can meet the requirements of professionals for the accurate identification of plant species. 展开更多
关键词 Deep learning convolutional neural network plant identification model improvement
下载PDF
Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network
7
作者 Md.Saiful Islam Shuvo Jyoti Das +2 位作者 Md.Riajul Alam Khan Sifat Momen Nabeel Mohammed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期519-534,共16页
COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over th... COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over the world.The healthcare sector of the world is facing great challenges tackling COVID cases.One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases.In this article,we propose a deep Convo-lutional Neural Network(CNN)based approach to detect COVID+(i.e.,patients with COVID-19),pneumonia and normal cases,from the chest X-ray images.COVID-19 detection from chest X-ray is suitable considering all aspects in compar-ison to Reverse Transcription Polymerase Chain Reaction(RT-PCR)and Computed Tomography(CT)scan.Several deep CNN models including VGG16,InceptionV3,DenseNet121,DenseNet201 and InceptionResNetV2 have been adopted in this pro-posed work.They have been trained individually to make particular predictions.Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy,recall,F1-score and precision of 94.75%,96%,95%and 95%respec-tively.After careful comparison with results available in the literature,we have found to develop models with a higher reliability.All the studies were carried out using a publicly available chest X-ray(CXR)image data-set. 展开更多
关键词 COVID-19 convolutional neural network deep learning DenseNet201 model performance
下载PDF
Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling 被引量:8
8
作者 Feng Hua Zhou Fang Tong Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2562-2572,共11页
System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On... System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework. 展开更多
关键词 convolutional neural network network MOTIF NAPHTHA PYROLYSIS KINETIC modeling
下载PDF
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
9
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network markov chain electricity demand forecasting
下载PDF
Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model
10
作者 Jian Liu Xiaodong Xia +2 位作者 Chunyang Han Jiao Hui Jim Feng 《Computers, Materials & Continua》 SCIE EI 2022年第10期265-278,共14页
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical... As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F). 展开更多
关键词 ELECTROENCEPHALOGRAPHY convolutional neural network long short-term memory encoder-decoder model generative adversarial network
下载PDF
Interaction Dynamics in a Social Network Using Hidden Markov Model
11
作者 Davis Bundi Ntwiga Carolyne Ogutu 《Social Networking》 2018年第3期147-155,共9页
Agents interactions in a social network are dynamic and stochastic. We model the dynamic interactions using the hidden Markov model, a probability model which has a wide array of applications. The transition matrix wi... Agents interactions in a social network are dynamic and stochastic. We model the dynamic interactions using the hidden Markov model, a probability model which has a wide array of applications. The transition matrix with three states, forgetting, reinforcement and exploration is estimated using simulation. Singular value decomposition estimates the observation matrix for emission of low, medium and high interaction rates. This is achieved when the rank approximation is applied to the transition matrix. The initial state probabilities are then estimated with rank approximation of the observation matrix. The transition and the observation matrices estimate the state and observed symbols in the model. Agents interactions in a social network account for between 20% and 50% of all the activities in the network. Noise contributes to the other portion due to interaction dynamics and rapid changes observable from the agents transitions in the network. In the model, the interaction proportions are low with 11%, medium with 56% and high with 33%. Hidden Markov model has a strong statistical and mathematical structure to model interactions in a social network. 展开更多
关键词 AGENTS INTERACTIONS SOCIAL network hidden markov model SINGULAR Value DECOMPOSITION
下载PDF
The application of hidden markov model in building genetic regulatory network
12
作者 Rui-Rui Ji Ding Liu Wen Zhang 《Journal of Biomedical Science and Engineering》 2010年第6期633-637,共5页
The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilist... The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN. 展开更多
关键词 GENETIC REGULATORY network hidden markov model STATES TRANSITION GENE Expression Data
下载PDF
Risk Identification based on Hidden Semi-Markov Model in Smart Distribution Network
13
作者 Fangyuan Chang Wanxing Sheng +2 位作者 Tianshu Zhang Yu Zhang Xiaohui Song 《Energy and Power Engineering》 2013年第4期954-957,共4页
The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network wi... The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology. 展开更多
关键词 RISK IDENTIFICATION hidden Semi-markov modelS SMART DISTRIBUTION network
下载PDF
Network Protocol Recognition Based on Convolutional Neural Network 被引量:4
14
作者 Wenbo Feng Zheng Hong +3 位作者 Lifa Wu Menglin Fu Yihao Li Peihong Lin 《China Communications》 SCIE CSCD 2020年第4期125-139,共15页
How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recogniti... How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recognition accuracy,a network protocol recognition method based on Convolutional Neural Network(CNN)is proposed.The method utilizes deep learning technique,and it processes network flows automatically.Firstly,normalization is performed on the intercepted network flows and they are mapped into two-dimensional matrix which will be used as the input of CNN.Then,an improved classification model named Ptr CNN is built,which can automatically extract the appropriate features of network protocols.Finally,the classification model is trained to recognize the network protocols.The proposed approach is compared with several machine learning methods.Experimental results show that the tailored CNN can not only improve protocol recognition accuracy but also ensure the fast convergence of classification model and reduce the classification time. 展开更多
关键词 convolutional neural network PROTOCOL RECOGNITION network FLOW CLASSIFICATION model
下载PDF
Automatic Image Annotation Using Adaptive Convolutional Deep Learning Model
15
作者 R.Jayaraj S.Lokesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期481-497,共17页
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ... Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled. 展开更多
关键词 Deep learning model J-image segmentation honey badger algorithm convolutional neural network image annotation
下载PDF
Identification of Weather Phenomena Based on Lightweight Convolutional Neural Networks 被引量:2
16
作者 Congcong Wang Pengyu Liu +2 位作者 Kebin Jia Xiaowei Jia Yaoyao Li 《Computers, Materials & Continua》 SCIE EI 2020年第9期2043-2055,共13页
Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and... Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models. 展开更多
关键词 Deep learning convolution neural networks lightweight models weather identification
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
17
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep Q-network(DQN)
下载PDF
Defect Detection Algorithm of Patterned Fabrics Based on Convolutional Neural Network 被引量:1
18
作者 XU Yang FEI Libin +1 位作者 YU Zhiqi SHENG Xiaowei 《Journal of Donghua University(English Edition)》 CAS 2021年第1期36-42,共7页
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly... The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory. 展开更多
关键词 patterned fabrics defect detection convolutional neural network(CNN) multi-scale model cascade network
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
19
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
20
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization Finite element modeling convolutional neural network
下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部