期刊文献+
共找到3,299篇文章
< 1 2 165 >
每页显示 20 50 100
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
1
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(cnns)
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
2
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 convolutional neural networks(cnns) deep learning image processing oscillation detection process industries
下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
3
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) convolutional neural networks(cnns) Evaluation of error
下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
4
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model convolutional Neural network(cnn) Finite Element Method(FEM)
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
5
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity convolutional neural network(cnn) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
6
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 COAL coal gangue convolutional neural network cnn object classification volume estimation separation system
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
7
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional Neural networks (cnn) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
Faster-than- Nyquist rate communication via convolutional neural networks- based demodulators 被引量:2
8
作者 欧阳星辰 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期6-10,共5页
A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the pro... A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency. 展开更多
关键词 bipolar extended binary phase shifting keying(EBPSK) convolutional neural networks(cnns) faster-thanNyquist(FTN) rate double-symbol united-decision
下载PDF
Audiovisual speech recognition based on a deep convolutional neural network
9
作者 Shashidhar Rudregowda Sudarshan Patilkulkarni +2 位作者 Vinayakumar Ravi Gururaj H.L. Moez Krichen 《Data Science and Management》 2024年第1期25-34,共10页
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India... Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively. 展开更多
关键词 Audiovisual speech recognition Custom dataset 1D convolution neural network(cnn) Deep cnn(Dcnn) Long short-term memory(LSTM) LIPREADING Dlib Mel-frequency cepstral coefficient(MFCC)
下载PDF
Investigation on the Chinese Text Sentiment Analysis Based on Convolutional Neural Networks in Deep Learning 被引量:12
10
作者 Feng Xu Xuefen Zhang +1 位作者 Zhanhong Xin Alan Yang 《Computers, Materials & Continua》 SCIE EI 2019年第3期697-709,共13页
Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is... Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method. 展开更多
关键词 convolutional neural network(cnn) deep learning learning rate NORMALIZATION sentiment analysis.
下载PDF
Age Invariant Face Recognition Using Convolutional Neural Networks and Set Distances 被引量:4
11
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2017年第3期174-185,共12页
Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and agi... Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones. 展开更多
关键词 Aging BIOMETRICS convolutional Neural networks (cnn) Deep LEARNING Image Set-Based Face Recognition (ISFR) Transfer LEARNING
下载PDF
Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction 被引量:3
12
作者 Ruibing Jin Min Wu +3 位作者 Keyu Wu Kaizhou Gao Zhenghua Chen Xiaoli Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1427-1439,共13页
Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recentl... Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recently,many deep learning based methods have been proposed to predict RUL.Among these methods,recurrent neural network(RNN)based approaches show a strong capability of capturing sequential information.This allows RNN based methods to perform better than convolutional neural network(CNN)based approaches on the RUL prediction task.In this paper,we question this common paradigm and argue that existing CNN based approaches are not designed according to the classic principles of CNN,which reduces their performances.Additionally,the capacity of capturing sequential information is highly affected by the receptive field of CNN,which is neglected by existing CNN based methods.To solve these problems,we propose a series of new CNNs,which show competitive results to RNN based methods.Compared with RNN,CNN processes the input signals in parallel so that the temporal sequence is not easily determined.To alleviate this issue,a position encoding scheme is developed to enhance the sequential information encoded by a CNN.Hence,our proposed position encoding based CNN called PE-Net is further improved and even performs better than RNN based methods.Extensive experiments are conducted on the C-MAPSS dataset,where our PE-Net shows state-of-the-art performance. 展开更多
关键词 convolutional neural network(cnn) deep learning position encoding remaining useful life prediction
下载PDF
Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks 被引量:1
13
作者 Chengxu LU Bo WANG +3 位作者 Xunpeng JIANG Junning ZHANG Kang NIU Yanwei YUAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期108-113,共6页
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated ... One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated a combination of time-resolved LIBS and convolutional neural networks(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R_c^2?=?0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network(ANN), showing R_v^2?=?0.6318 and the root mean square error of validation(RMSEV)?=?0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R_v^2?=?0.7366 and RMSEV?=?0.7855.These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K.However, due to limited calibration samples, the two-dimensional models presented over-fitting.The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R_v^2?=?0.9968 and RMSEV?=?0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil. 展开更多
关键词 quantitative DETECTION potassium(K) SOIL TIME-RESOLVED LASER-INDUCED breakdown spectroscopy(LIBS) convolutional neural networks(cnns)
下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
14
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(cnns) signal detection
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
15
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(cnn) cloud RAN deep Q-network(DQN)
下载PDF
Fine-Grained Classification of Product Images Based on Convolutional Neural Networks 被引量:1
16
作者 Tongtong Liu Rubing Wang +2 位作者 Jikang Chen Shengliang Han Jimin Yang 《Advances in Molecular Imaging》 2018年第4期69-87,共19页
With the rapid development of the Internet of things and e-commerce, feature-based image retrieval and classification have become a serious challenge for shoppers searching websites for relevant product information. T... With the rapid development of the Internet of things and e-commerce, feature-based image retrieval and classification have become a serious challenge for shoppers searching websites for relevant product information. The last decade has witnessed great interest in research on content-based feature extraction techniques. Moreover, semantic attributes cannot fully express the rich image information. This paper designs and trains a deep convolutional neural network that the convolution kernel size and the order of network connection are based on the high efficiency of the filter capacity and coverage. To solve the problem of long training time and high resource share of deep convolutional neural network, this paper designed a shallow convolutional neural network to achieve the similar classification accuracy. The deep and shallow convolutional neural networks have data pre-processing, feature extraction and softmax classification. To evaluate the classification performance of the network, experiments were conducted using a public database Caltech256 and a homemade product image database containing 15 species of garment and 5 species of shoes on a total of 20,000 color images from shopping websites. Compared with the classification accuracy of combining content-based feature extraction techniques with traditional support vector machine techniques from 76.3% to 86.2%, the deep convolutional neural network obtains an impressive state-of-the-art classification accuracy of 92.1%, and the shallow convolutional neural network reached a classification accuracy of 90.6%. Moreover, the proposed convolutional neural networks can be integrated and implemented in other colour image database. 展开更多
关键词 PRODUCT CLASSIFICATION FEATURE Extraction convolutional NEURAL network (cnn) Softmax
下载PDF
Hyper-Tuned Convolutional Neural Networks for Authorship Verification in Digital Forensic Investigations 被引量:1
17
作者 Asif Rahim Yanru Zhong +2 位作者 Tariq Ahmad Sadique Ahmad Mohammed A.ElAffendi 《Computers, Materials & Continua》 SCIE EI 2023年第8期1947-1976,共30页
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h... Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism. 展开更多
关键词 convolutional Neural network(cnn) hyper-tuning authorship verification digital forensics
下载PDF
Encoding candlesticks as images for pattern classification using convolutional neural networks 被引量:1
18
作者 Jun-Hao Chen Yun-Cheng Tsai 《Financial Innovation》 2020年第1期470-488,共19页
Candlestick charts display the high,low,opening,and closing prices in a specific period.Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate.These patterns capture i... Candlestick charts display the high,low,opening,and closing prices in a specific period.Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate.These patterns capture information on the candles.According to Thomas Bulkowski’s Encyclopedia of Candlestick Charts,there are 103 candlestick patterns.Traders use these patterns to determine when to enter and exit.Candlestick pattern classification approaches take the hard work out of visually identifying these patterns.To highlight its capabilities,we propose a two-steps approach to recognize candlestick patterns automatically.The first step uses the Gramian Angular Field(GAF)to encode the time series as different types of images.The second step uses the Convolutional Neural Network(CNN)with the GAF images to learn eight critical kinds of candlestick patterns.In this paper,we call the approach GAF-CNN.In the experiments,our approach can identify the eight types of candlestick patterns with 90.7%average accuracy automatically in real-world data,outperforming the LSTM model. 展开更多
关键词 convolutional Neural networks(cnn) Gramian Angular Field(GAF) CANDLESTICK Patterns Classification Time-Series Financial Vision
下载PDF
Face Recognition across Time Lapse Using Convolutional Neural Networks 被引量:3
19
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2016年第3期141-151,共11页
Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in genera... Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather than hand-crafted feature extraction for robust face recognition across time lapse. A CNN architecture using the VGG-Face deep (neural network) learning is found to produce highly discriminative and interoperable features that are robust to aging variations even across a mix of biometric datasets. The features extracted show high inter-class and low intra-class variability leading to low generalization errors on aging datasets using ensembles of subspace discriminant classifiers. The classification results for the all-encompassing authentication methods proposed on the challenging FG-NET and MORPH datasets are competitive with state-of-the-art methods including commercial face recognition engines and are richer in functionality and interoperability than existing methods as it handles mixed biometric datasets, e.g., FG-NET and MORPH. 展开更多
关键词 Aging AUTHENTICATION BIOMETRICS convolutional Neural networks (cnn) Deep Learning Ensemble Methods Face Recognition INTEROPERABILITY Security
下载PDF
Pedestrian attribute classification with multi-scale and multi-label convolutional neural networks
20
作者 朱建清 Zeng Huanqiang +2 位作者 Zhang Yuzhao Zheng Lixin Cai Canhui 《High Technology Letters》 EI CAS 2018年第1期53-61,共9页
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c... Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin. 展开更多
关键词 PEDESTRIAN ATTRIBUTE CLASSIFICATION MULTI-SCALE features MULTI-LABEL CLASSIFICATION convolutional NEURAL network (cnn)
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部