期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于全局响应面算法的Q235B钢的Johnson-Cook模型参数最优
1
作者 苏绍娟 武玉杰 +4 位作者 王国回 苗哲 熊野萍 郭方昕 刘海波 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期470-478,共9页
This study investigates the mechanical properties of Q235B steel through quasi-static tests at both room temperature and elevated temperature.The initial values of the Johnson-Cook model parameters are determined usin... This study investigates the mechanical properties of Q235B steel through quasi-static tests at both room temperature and elevated temperature.The initial values of the Johnson-Cook model parameters are determined using a fitting method.The global response surface algorithm is employed to optimize and calibrate the Johnson-Cook model parameters for Q235B steel under both room temperature and elevated temperature conditions.A simulation model is established at room temperature,and the simulated mechanical performance curves for displacement and stress are monitored.Multiple optimization algorithms are applied to optimize and calibrate the model parameters at room temperature.The global response surface algorithm is identified as the most suitable algorithm for this optimization problem.Sensitivity analysis is conducted to explore the impact of model parameters on the objective function.The analysis indicates that the optimized material model better fits the experimental values,aligning more closely with the actual test results of material strain mechanisms over a wide temperature range. 展开更多
关键词 Q235B Mechanical property test Numerical simulation Johnson cook model Global response surface algorithm
下载PDF
New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum 被引量:7
2
作者 H.R.REZAEI ASHTIANI A.A.SHAYANPOOR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期345-357,共13页
A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA10... A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size. 展开更多
关键词 constitutive equation modified Johnson−Cook model initial grain size flow stress hot deformation AA1070 aluminum
下载PDF
The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture 被引量:10
3
作者 Feng Zhang Zheng Liu +5 位作者 Yue Wang Pingli Mao Xinwen Kuang Zhenglai Zhang Yingdong Ju Xiaozhong Xu 《Journal of Magnesium and Alloys》 SCIE 2020年第1期172-183,共12页
The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 ... The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 K and the strain rate of 0.001-2200 s^−1.The temperature term in Johnson-Cook(JC)constitutive model had been reasonably modified.This advantage made constitutive model promising for decribing the dynamic deformation behavior of AZ31-ND with{0002}texture more accurately.The obtained true stress-true plastic strain curves agreed well with the measured results in a wide range of strain rates and temperatures.The thermal softeninging,strain and strain rate hardening effect on the AZ31-ND with{0002}texture were discussed.The adiabatic shear band(ASB)of AZ31-ND with{0002}texture hat shaped specimen was successfully predicted by combining modified JC constitutive model and numerical simulation,which was also validated by Electron Back-Scattered Diffraction(EBSD)map under the same boundary condition. 展开更多
关键词 Modified Johnson Cook constitutive model AZ31-ND with{0002}texture Dynamic compression Numerical simulation Adiabatic shear band
下载PDF
Constitutive modeling of ultra?fine?grained titanium flow stress for machining temperature prediction
4
作者 Jinqiang Ning Vinh Nguyen +2 位作者 Yong Huang Karl T.Hartwig Steven Y.Liang 《Bio-Design and Manufacturing》 SCIE CSCD 2019年第3期153-160,共8页
This work investigates the machining temperatures of ultra-fine-grained titanium(UFG Ti),prepared by equal channel angular extrusion,through analytical modeling.UFG Ti has great usefulness in biomedical applications b... This work investigates the machining temperatures of ultra-fine-grained titanium(UFG Ti),prepared by equal channel angular extrusion,through analytical modeling.UFG Ti has great usefulness in biomedical applications because of its high mechanical strength,sufficient manufacturability,and high biocompatibility.The temperatures were predicted using a physics-based predictive model based on material constitutive relation and mechanics of the orthogonal cutting process.The minimization between the stress calculated using Johnson–Cook constitutive model and the same stress calculated using mechanics model yields the estimation of machining temperatures at two deformation zones.Good agreements are observed upon validation to the values reported in the literature.The machinability of UFG Ti is investigated by comparing its machining temperature to that of Ti–6Al–4V alloy under the same cutting conditions.Significantly lower temperatures are observed in machining UFG Ti.The computational efficiency of the presented model is investigated by comparing its average computational time(~0.5 s)to that of a widely used modified chip formation model(8900 s)with comparable prediction accuracy.This work extends the applicability of the presented temperature model to a broader class of materials,specifically ultra-fine-grained metals.The high computational efficiency allows the in situ temperature prediction and optimization of temperature condition with process parameters planning. 展开更多
关键词 Ultra-fine-grained titanium Analytical modeling High computational efficiency Johnson–Cook model Cutting mechanics
下载PDF
Flow behavior and fracture of Al−Mg−Si alloy at cryogenic temperatures 被引量:3
5
作者 Danielle Cristina Camilo MAGALHAES Andrea Madeira KLIAUGA Vitor Luiz SORDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期595-608,共14页
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile... The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed. 展开更多
关键词 cryogenic temperature aluminum alloy flow behavior strain rate sensitivity work-hardening behavior Johnson−Cook model FRACTURE
下载PDF
A dynamic constitutive model of ultra high toughness cementitious composites 被引量:1
6
作者 Shi-lang XU Ping WU +3 位作者 Fei ZHOU Xiao JIANG Bo-kun CHEN Qing-hua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第12期939-960,共22页
In this study,an explicit dynamic constitutive model was established for ultra high toughness cementitious composites(UHTCCs).The model,based on the Holmquist–Johnson–Cook(HJC)model,includes tensile and compressive ... In this study,an explicit dynamic constitutive model was established for ultra high toughness cementitious composites(UHTCCs).The model,based on the Holmquist–Johnson–Cook(HJC)model,includes tensile and compressive damage evolution,hydrostatic pressure,strain rate,and the Lode angle effect.The proposed model was embedded in LS-DYNA software and then comprehensive tests were carried on a hexahedral brick element formulation under uniaxial,biaxial,and triaxial stress states to verify its rationality through comparisons with results determined by the HJC and Karagozian&Case(K&C)models.Finally,the proposed model was used to simulate the damage caused to UHTCC targets subjected to blast by embedded explosive and projectile penetration,and predictions were compared with corresponding experimental results.The results of the numerical simulations showed that our proposed model was more accurate than the HJC model in predicting the size of the crater,penetration depth,and the distribution of cracks inside the target following the blast or high-speed impact loading. 展开更多
关键词 Holmquist–Johnson–Cook(HJC)model Ultra high toughness cementitious composite(UHTCC) Constitutive model Explosion test Projectile penetration Numerical simulation
原文传递
A Thermo-mechanical Investigation on Laser Ablation of Aluminum Alloy 被引量:1
7
作者 Xuehai Qian Yongkang Luo +2 位作者 Qingfeng Chai Yu Zhang Lv Zhao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第5期658-671,共14页
The interactions between laser and metal are extremely complicated,during which material is gradually removed due to melting or evaporation.This further leads to a continuously moving ablation front and a strong tempe... The interactions between laser and metal are extremely complicated,during which material is gradually removed due to melting or evaporation.This further leads to a continuously moving ablation front and a strong temperature gradient,ultimately producing through-thickness holes and residual stresses inside the target.The present work establishes a simulation framework which couples the loading of laser beam and the moving ablation front by using the"birth-death"element method.This framework allows to obtain accurate temperature field and ablated area,the latter being quite close to experimental results with 2024 aluminum target.Moreover,the Johnson-Cook constitutive model is employed to assess the residual stress and damage around the ablation holes,therefore enabling the evaluation of residual strength of ablated target. 展开更多
关键词 Laser ablation Moving front Aluminum alloy Johnson–Cook model Residual stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部