A mathematical model to describe the TCS process inPET high-speed melt-spinning is established.The de-velopment of crystallinity,molecular orientation andmorphological features of high-speed-spun PET fiberin TCS proce...A mathematical model to describe the TCS process inPET high-speed melt-spinning is established.The de-velopment of crystallinity,molecular orientation andmorphological features of high-speed-spun PET fiberin TCS process is investigated at take-up speeds rangingfrom 3600-4400 m/min and thermal channel tempera-tures ranging from 160-200℃ by simulation.The pro-files of tensile force,running velocity,temperature,bi-refringence,crystallinity and diameter in the TCS spin-line for various process conditions are obtained.Thepredicted results using this model are compared with themeasured crystallinty,diameter and birefringence.Theresults indicate that they are in fairly good agreement.The"necking point"in the TCS spinline can be predictedby this model,and its position changes with the corre-sponding process parameters such as take-up speed andthermal channel temperature.It is found that the neck-ing point moves towards the spinneret when the take-upspeed or the thermal channel temperature increases.展开更多
We analyze in this work anisotropic heat conduction induced by a harmonically oscillating laser source incident on rotating conductors, exploiting an analogy with an effect discovered long ago, called the Zel’dovich ...We analyze in this work anisotropic heat conduction induced by a harmonically oscillating laser source incident on rotating conductors, exploiting an analogy with an effect discovered long ago, called the Zel’dovich effect. We re-covered the main results of a recently published paper that predicts the translational Doppler frequency shift of a thermal wave induced on a sample moving with uniform rectilinear motion. We extend then this framework to take into account the frequency shift of a thermal field propagating on a rotating platform. We show that it coincides with the rotational frequency shift which has been recently observed on surface acoustic waves and hydrodynamic surface waves, called rotational superradiance. Finally, we use an analogy with the Tolman effect to deduce a simple estimate of the average temperature gradient induced by rotation, showing the existence of a new cooling effect associated with heat torque transfer.展开更多
High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat di...High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.展开更多
A photovoltaic thermal(PV/T)system with parallel cooling channels was designed in this work to decrease the PV panel temperature and improve its photoelectric conversion efficiency.A 4E analysis method(includes energy...A photovoltaic thermal(PV/T)system with parallel cooling channels was designed in this work to decrease the PV panel temperature and improve its photoelectric conversion efficiency.A 4E analysis method(includes energy,exergy,economic,and environmental aspects)was formulated to comprehensively evaluate the performances of the PV/T system,combining experimental and simulation studies.Firstly,the experiment was performed using water as the cooling medium.Results show that the PV/T system can reduce daily CO_(2) emissions by 1682.47-1705.98 g,and compared to the PV system,the added cooling module can increase electrical efficiency and environmental performance by 12.19%and 6.2%,respectively.When the mass flow of water rose from 0.017 kg/s to 0.023 kg/s,the electrical,thermal,and overall efficiencies were improved by 3.82%,11.36%,and 8.27%,respectively.Secondly,a numerical simulation model was constructed based on the experimental results to predict operations of the presented PV/T system using nanofluids as the cooling medium,including Ag,Al_(2)O_(3),and SiO_(2).Simulation results show that the Al_(2)O_(3)-nanofluid-based PV/T system has a higher application value,enabling an electrical efficiency of up to 15.13%.Its thermal efficiency can be enhanced by 5.43%when the volume fraction of Al_(2)O_(3);increases from 1%to 5%.展开更多
文摘A mathematical model to describe the TCS process inPET high-speed melt-spinning is established.The de-velopment of crystallinity,molecular orientation andmorphological features of high-speed-spun PET fiberin TCS process is investigated at take-up speeds rangingfrom 3600-4400 m/min and thermal channel tempera-tures ranging from 160-200℃ by simulation.The pro-files of tensile force,running velocity,temperature,bi-refringence,crystallinity and diameter in the TCS spin-line for various process conditions are obtained.Thepredicted results using this model are compared with themeasured crystallinty,diameter and birefringence.Theresults indicate that they are in fairly good agreement.The"necking point"in the TCS spinline can be predictedby this model,and its position changes with the corre-sponding process parameters such as take-up speed andthermal channel temperature.It is found that the neck-ing point moves towards the spinneret when the take-upspeed or the thermal channel temperature increases.
文摘We analyze in this work anisotropic heat conduction induced by a harmonically oscillating laser source incident on rotating conductors, exploiting an analogy with an effect discovered long ago, called the Zel’dovich effect. We re-covered the main results of a recently published paper that predicts the translational Doppler frequency shift of a thermal wave induced on a sample moving with uniform rectilinear motion. We extend then this framework to take into account the frequency shift of a thermal field propagating on a rotating platform. We show that it coincides with the rotational frequency shift which has been recently observed on surface acoustic waves and hydrodynamic surface waves, called rotational superradiance. Finally, we use an analogy with the Tolman effect to deduce a simple estimate of the average temperature gradient induced by rotation, showing the existence of a new cooling effect associated with heat torque transfer.
基金supported by the National Natural Science Foundation of China(Grant No.52106112,52007153)Natural Science Basic Research Plan of Shaanxi Province in China(Program No.2022JM-185)。
文摘High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.
基金supported by the National Natural Science Foundation of China(Grant No.52276007)the Fundamental Research Funds for the Central Universities(Grant No.2023JC010).
文摘A photovoltaic thermal(PV/T)system with parallel cooling channels was designed in this work to decrease the PV panel temperature and improve its photoelectric conversion efficiency.A 4E analysis method(includes energy,exergy,economic,and environmental aspects)was formulated to comprehensively evaluate the performances of the PV/T system,combining experimental and simulation studies.Firstly,the experiment was performed using water as the cooling medium.Results show that the PV/T system can reduce daily CO_(2) emissions by 1682.47-1705.98 g,and compared to the PV system,the added cooling module can increase electrical efficiency and environmental performance by 12.19%and 6.2%,respectively.When the mass flow of water rose from 0.017 kg/s to 0.023 kg/s,the electrical,thermal,and overall efficiencies were improved by 3.82%,11.36%,and 8.27%,respectively.Secondly,a numerical simulation model was constructed based on the experimental results to predict operations of the presented PV/T system using nanofluids as the cooling medium,including Ag,Al_(2)O_(3),and SiO_(2).Simulation results show that the Al_(2)O_(3)-nanofluid-based PV/T system has a higher application value,enabling an electrical efficiency of up to 15.13%.Its thermal efficiency can be enhanced by 5.43%when the volume fraction of Al_(2)O_(3);increases from 1%to 5%.