With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by ...With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by a rise of the process parameters.Currently,live steam pressures and temperatures up to 300 bars and 923 K are planned as the next step.Closed circuit steam cooling of blades and vanes in modern steam turbines is a promising technology in order to establish elevated live steam temperatures in future steam turbine cycles.In this paper,a steam-cooled test vane in a cascade with external hot steam flow is analyzed numerically with the in-house code CHTflow.A parametric analysis aiming to improve the cooling effectiveness is carried out by varying the cooling mass flow ratio.The results from two investigated cases show that the steam cooling technique has a good application potential in the steam turbine.The internal part of the vane is cooled homogeneously in both cases.With the increased cooling mass flow rate,there is a significant improvement of cooling efficiency at the leading edge.The results show that the increased cooling mass flow ratio can enhance the cooling effectiveness at the leading edge.With respect to trailing edge,there is no observable improvement of cooling effectiveness with the increased cooling mass flow.This implies that due to the limited dimension at the trailing edge,the thermal stress cannot be decreased by increasing the cooling mass flow rate.Therefore,impingement-cooling configuration at the trailing edge might be a solution to overcome the critical thermal stress there.It is also observed that the performance of the cooling effective differs on pressure side and suction side.It implicates that the equilibrium of the cooling effectiveness on two sides are influenced by a coupled relationship between cooling mass flow ratio and hole geometry.In future work,optimizing the hole geometry and cooling steam supply conditions might be the solutions for an equivalent cooling effectiveness along whole profile.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance ch...The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.展开更多
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag...The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.展开更多
文摘With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by a rise of the process parameters.Currently,live steam pressures and temperatures up to 300 bars and 923 K are planned as the next step.Closed circuit steam cooling of blades and vanes in modern steam turbines is a promising technology in order to establish elevated live steam temperatures in future steam turbine cycles.In this paper,a steam-cooled test vane in a cascade with external hot steam flow is analyzed numerically with the in-house code CHTflow.A parametric analysis aiming to improve the cooling effectiveness is carried out by varying the cooling mass flow ratio.The results from two investigated cases show that the steam cooling technique has a good application potential in the steam turbine.The internal part of the vane is cooled homogeneously in both cases.With the increased cooling mass flow rate,there is a significant improvement of cooling efficiency at the leading edge.The results show that the increased cooling mass flow ratio can enhance the cooling effectiveness at the leading edge.With respect to trailing edge,there is no observable improvement of cooling effectiveness with the increased cooling mass flow.This implies that due to the limited dimension at the trailing edge,the thermal stress cannot be decreased by increasing the cooling mass flow rate.Therefore,impingement-cooling configuration at the trailing edge might be a solution to overcome the critical thermal stress there.It is also observed that the performance of the cooling effective differs on pressure side and suction side.It implicates that the equilibrium of the cooling effectiveness on two sides are influenced by a coupled relationship between cooling mass flow ratio and hole geometry.In future work,optimizing the hole geometry and cooling steam supply conditions might be the solutions for an equivalent cooling effectiveness along whole profile.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
文摘The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.
文摘The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.