This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Night sky cooling is explored as an alternative to the conventional cooling technologies using fossil fuels. The night sky cooling method is based on the long wave radiation of unglazed collectors to the sky at night....Night sky cooling is explored as an alternative to the conventional cooling technologies using fossil fuels. The night sky cooling method is based on the long wave radiation of unglazed collectors to the sky at night. An evaluation of the night sky cooling system is present for a residential building in three cities of Australia, namely Alice Springs, Darwin and Melbourne. The system comprises an unglazed flat plate solar collector integrated with borehole storage. It uses night sky radiation to reduce the temperature of the ground near to the boreholes. The system was simulated with TRNSYS, a transient simulation program. The simulation results for adequately sized systems show that night sky radiation is able to reduce the coolth storage borehole temperature and the proposed system is able to meet the cooling load of the residential building simulated in three locations. Borchole lengths of 270, 318 and 106 m are required for coolth storage with 90, 260 and 14 m2 collector area for heat rejection in Alice Springs, Darwin and Melbourne, respectively. At the 20th simulation year, the proposed system is able to achieve a system cooling coefficient of performance of 2.2 in Alice Springs, and 2.8 in Darwin and Melbourne.展开更多
A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by T...A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.展开更多
More and more attention was paid to phase change energy storage in air conditioning domain and construction energy conservation,and became the focus of the international research. Through the test and analysis of the ...More and more attention was paid to phase change energy storage in air conditioning domain and construction energy conservation,and became the focus of the international research. Through the test and analysis of the parameters of the indoor thermal property in phase change wallboard room and ordinary room,the effects of using phase change wallboards on indoor temperature in summer and air conditioning are obtained. The combination of construct enclosure and phase change materials can stabilize indoor temperature,improve indoor thermal comfort,reduce the frequency of the operation of air conditioning facility,cut the initial investment and operation expense,and meanwhile play an practical role in "the power balancing between the peak period and the valley period" policy. Through the experiment and the test of the effects exerted by phase change wallboard room and ordinary room on the indoor thermal environment,it is obtained that the phase change wallboard can reduce the fluctuation range of indoor temperature and the heat flow from the outside into indoor environment in summer. According to the study,it is found that the effect of cool-storing for 5 h is obvious. Through the analysis of the phase change wallboard without air conditioning in daytime,it is obtained that the frequency of the operation of air conditioning in phase change wallboard room is smaller than that in the ordinary room,which can prolong the lifetime of the facility and reduce operation expense.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heat...A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.展开更多
By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer wa...By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.展开更多
Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balanc...Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.展开更多
In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of r...In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.展开更多
In modern giant buildings,in order to improve energy utilization efficiency, cooling systems have developed from conventional chillers alone to smart energy net which includes chillers,ice storage,ground-source heat p...In modern giant buildings,in order to improve energy utilization efficiency, cooling systems have developed from conventional chillers alone to smart energy net which includes chillers,ice storage,ground-source heat pump,combined cooling heating and power( CCHP) and so on. The reasonable distribution of load is the key to guarantee such system in economical operation.Based on typical multi-type cooling system,economic models of different devices are presented and real-time intelligent economic scheduling with the approach of mixed integer programming is carried out. This algorithm has been applied in a certain building of Shanghai and results of simulation show that it is able to provide guidance on intelligent economic scheduling for multi-type cooling system.展开更多
It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting syste...It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting system conduction cooled by GM coolers. This paper presents an experimental investigation into the effects of pure Ag and AgAu alloys sheath materials on the properties of Bi(2223) multifilamentary tapes and the optimisation of conduction cooled hybrid current leads made from copper and Bi(2223)/Ag or Bi(2223)/AgAu tapes. The thermal conductivity of the tapes were measured by cryogenic steady heat flux method and the resistance was measured by using standard DC four probe method at low temperature. The results showed that the reduction of thermal conductivity by the addition of Au into the sheath material of Bi(2223) tapes was 65 0 0, 75 0 0 and 85 0 0 lower than that of pure Ag sheathed Bi(2223) tapes and the increase of resistivity was 4.9 , 10 and 19.4 times higher than that of pure Ag for the addition of 2.2 0 0, 5.7 0 0 and 10.7 0 0Au(atom ratio) respectively. And the study also attempts to optimise thermodynamically the conduction cooled hybrid current lead by using a developed model, which took the irreversibility of commercial GM coolers, the contact resistance and thermal conductance into account. Predictions from the model showed that AgAu alloys were suitable candidate materials to replace Ag as sheath material of Bi(2223) tapes applied in HTS current leads. In addition, Bi(2223)/AgAu was a suitable material to be applied as the HTS section of hybrid current leads in conduction cooled superconducting electric systems.展开更多
以夏热冬冷地区的办公建筑为例,利用瞬态系统仿真程序(transient system simulation program, TRNSYS)构建主动式相变蓄能地板模块,建立了主动式相变蓄能地板空调系统和常规风机盘管加新风空调系统的仿真模型,对其节能性和经济性进行模...以夏热冬冷地区的办公建筑为例,利用瞬态系统仿真程序(transient system simulation program, TRNSYS)构建主动式相变蓄能地板模块,建立了主动式相变蓄能地板空调系统和常规风机盘管加新风空调系统的仿真模型,对其节能性和经济性进行模拟计算.以典型日和供冷季晚间蓄冷运行工况为条件,研究冷冻水温对主动式相变蓄能地板的蓄释能特性、室温波动与热泵制冷系数的影响.结果表明:夜间相变蓄冷工况下,在满足每平方米冷负荷为74.78 W情况下,9℃为最佳供水水温;采取晚间低电价时段间歇运行蓄冷热泵的方案,能够有效提高热泵运行时的制冷系数,并降低运行费用;主动式相变蓄能地板空调系统供冷季的能耗相比于常规风机盘管加新风空调系统减少30.5%,运行费用减少44.24%,夏季制冷综合能效比达到了2.38.展开更多
含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Ref...含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
文摘Night sky cooling is explored as an alternative to the conventional cooling technologies using fossil fuels. The night sky cooling method is based on the long wave radiation of unglazed collectors to the sky at night. An evaluation of the night sky cooling system is present for a residential building in three cities of Australia, namely Alice Springs, Darwin and Melbourne. The system comprises an unglazed flat plate solar collector integrated with borehole storage. It uses night sky radiation to reduce the temperature of the ground near to the boreholes. The system was simulated with TRNSYS, a transient simulation program. The simulation results for adequately sized systems show that night sky radiation is able to reduce the coolth storage borehole temperature and the proposed system is able to meet the cooling load of the residential building simulated in three locations. Borchole lengths of 270, 318 and 106 m are required for coolth storage with 90, 260 and 14 m2 collector area for heat rejection in Alice Springs, Darwin and Melbourne, respectively. At the 20th simulation year, the proposed system is able to achieve a system cooling coefficient of performance of 2.2 in Alice Springs, and 2.8 in Darwin and Melbourne.
基金Project(2010DFA72740) supported by the International Science & Technology Cooperation Program of China
文摘A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.
基金Project(50878133) supported by the National Natural Science Foundation of ChinaProject(2007R37) supported by the Program Supporting Excellent Talents of Liaoning Province,China+1 种基金Project(2008S193) supported by the Key Laboratory Fund of Education Department of Liaoning Province,ChinaProject(1071211-1-00) supported by the Scientific and Technical Fund Project Subsidy of Shenyang,China
文摘More and more attention was paid to phase change energy storage in air conditioning domain and construction energy conservation,and became the focus of the international research. Through the test and analysis of the parameters of the indoor thermal property in phase change wallboard room and ordinary room,the effects of using phase change wallboards on indoor temperature in summer and air conditioning are obtained. The combination of construct enclosure and phase change materials can stabilize indoor temperature,improve indoor thermal comfort,reduce the frequency of the operation of air conditioning facility,cut the initial investment and operation expense,and meanwhile play an practical role in "the power balancing between the peak period and the valley period" policy. Through the experiment and the test of the effects exerted by phase change wallboard room and ordinary room on the indoor thermal environment,it is obtained that the phase change wallboard can reduce the fluctuation range of indoor temperature and the heat flow from the outside into indoor environment in summer. According to the study,it is found that the effect of cool-storing for 5 h is obvious. Through the analysis of the phase change wallboard without air conditioning in daytime,it is obtained that the frequency of the operation of air conditioning in phase change wallboard room is smaller than that in the ordinary room,which can prolong the lifetime of the facility and reduce operation expense.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
文摘A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.
基金Project(50878133) supported by the National Natural Science Foundation of ChinaProject(2007R37) supported by the Program of Excellent Talents in Liaoning Province,China+1 种基金Project(2008S193) supported by the Key Laboratory Fund of Education Department in Liaoning Province, ChinaProject(1071211-1-00) supported by the Scientific and Technical Fund of Shenyang,China
文摘By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000)
文摘Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.
文摘In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.
基金the Project of Science and Technology Commission of Shanghai Municipality,China(No.12dz1200203)the Chongming Smart Grid National Sci-Tech Support Plan of China(No.2013BAA01B04)
文摘In modern giant buildings,in order to improve energy utilization efficiency, cooling systems have developed from conventional chillers alone to smart energy net which includes chillers,ice storage,ground-source heat pump,combined cooling heating and power( CCHP) and so on. The reasonable distribution of load is the key to guarantee such system in economical operation.Based on typical multi-type cooling system,economic models of different devices are presented and real-time intelligent economic scheduling with the approach of mixed integer programming is carried out. This algorithm has been applied in a certain building of Shanghai and results of simulation show that it is able to provide guidance on intelligent economic scheduling for multi-type cooling system.
文摘It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting system conduction cooled by GM coolers. This paper presents an experimental investigation into the effects of pure Ag and AgAu alloys sheath materials on the properties of Bi(2223) multifilamentary tapes and the optimisation of conduction cooled hybrid current leads made from copper and Bi(2223)/Ag or Bi(2223)/AgAu tapes. The thermal conductivity of the tapes were measured by cryogenic steady heat flux method and the resistance was measured by using standard DC four probe method at low temperature. The results showed that the reduction of thermal conductivity by the addition of Au into the sheath material of Bi(2223) tapes was 65 0 0, 75 0 0 and 85 0 0 lower than that of pure Ag sheathed Bi(2223) tapes and the increase of resistivity was 4.9 , 10 and 19.4 times higher than that of pure Ag for the addition of 2.2 0 0, 5.7 0 0 and 10.7 0 0Au(atom ratio) respectively. And the study also attempts to optimise thermodynamically the conduction cooled hybrid current lead by using a developed model, which took the irreversibility of commercial GM coolers, the contact resistance and thermal conductance into account. Predictions from the model showed that AgAu alloys were suitable candidate materials to replace Ag as sheath material of Bi(2223) tapes applied in HTS current leads. In addition, Bi(2223)/AgAu was a suitable material to be applied as the HTS section of hybrid current leads in conduction cooled superconducting electric systems.
文摘含冰粒的载/蓄冷充填降温是解决深井热害问题的有效方式,但其制冰能耗大、系统运行费用较高。为此,研发了基于太阳能吸附制冷的矿井载/蓄冷充填降温系统(Mine Cold Load/Storage Backfill Cooling System Based on Solar Adsorption Refrigeration),该系统由地面太阳能集热子系统、吸附制冷子系统和地下输冰子系统组成。通过建立子系统的数学模型和地面系统的TRNSYS模型,分别分析甲醇解吸量、吸附制冷量和吸附制冰量在不同太阳能辐射强度、不同季节和不同地区影响下的变化规律,进而得出太阳辐射强度和太阳辐射连续性是造成制冰量差异的主要原因。选取太阳辐射强度和太阳连续性较优的淮南、南宁两区域进行系统制冰能效分析,与传统蒸汽压缩式制冷系统相比,该系统的吸附制冷子系统平均节能效率达到64.71%。研究结果反映出,太阳能吸附制冷与载/蓄冷充填降温相结合的新型矿井降温系统的研发,对于高效解决矿井热害问题有所裨益。
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。