期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance 被引量:1
1
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Experimental Study of Heat Transfer and Film Cooling Performance of Upstream Ejected Coolant on a Turbine Endwall 被引量:2
2
作者 ZHANG Jie LIU Cunliang +2 位作者 ZHANG Li YAO Chunyi LI Lin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期718-728,共11页
An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a ... An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step.In this experiment,the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated.The dimensionless heat transfer coefficient(Nu)and adiabatic film cooling effectiveness(η)on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal(TLC)technique and the pressure sensitive paint(PSP)technique,respectively.Three mass flow ratios(MFR)of 0.64%,0.85%,and 1.07%,as well as two leakage slot widths(W)of 3.93 mm,and 7.86 mm were considered.Results indicate that the injection film suppresses the strength of the passage vortex,which leads to the coolant covering almost the entire endwall.This result is more evident for the higher MFR cases,meanwhile,the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR.However,the case with a higher MFR produces a higher heat transfer coefficient distribution,especially in the region close to the leakage slot edge.Besides,when the W is lower,the endwall presents a higherηand a lower Nu for all the cases,which can guide the optimal design of the endwall. 展开更多
关键词 axisymmetric turbine endwall film cooling effectiveness heat transfer coefficient coolant injection leakage slot
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部