The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the ...With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr...In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
基金Financial supports for this project, provided by the key program supported by the National Natural Science Foundation of China(No. 51134005)the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120023120004), are gratefully acknowledged
文摘With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
基金Supported by the Ministerial Level Advanced Research Foundation(40402070101)
文摘In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.