Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consum...Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consumption and 26 ℃ as the basic temperature of CDD. The results indicated that the changing trends of CDD in Xi'an and Chang'an were basically identical within a year,and the demand for cooling refrigeration was large mainly from June to August,especially in July. The maximum of urban-rural difference of CDD between Xi'an and Chang'an appeared in June.In order to achieve the same temperature,energy needed by the urban area was 5-7 ℃·d more than the suburb from June to August. Temperature and the cooling energy consumption were closely related,and the correlation degree increased with the rise of temperature. The effects of temperature increase of 1 ℃ on cooling energy consumption rate in Xi'an were more obvious than that in Chang'an. In both Xi'an and Chang'an,the effects of temperature increase of 1 ℃ on cooling energy consumption rate in July and August were greater than that in May,June and September.Evaluation models of cooling energy consumption in summer in Xi'an and Chang'an were built using temperature anomaly and CDD variability and can be applied to business systems.展开更多
Nowadays, air conditioning, a relatively energy-intensive method, is still the main way to cooling buildings. This paper proposes two designs of thin film which uses photonic crystal and is based on theories of black-...Nowadays, air conditioning, a relatively energy-intensive method, is still the main way to cooling buildings. This paper proposes two designs of thin film which uses photonic crystal and is based on theories of black-body radiation and electrodynamics. By different designs, the two thin films have disparate photonic band gap, making them respectively suitable for wall and windows. As a new type of material for buildings, it has distinguished advantages of low-energy consumption and high efficiency.展开更多
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,...The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.展开更多
Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance fo...Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.展开更多
The building sector is facing a challenge in achieving carbon neutrality due to climate change and urbanization.Urban building energy modeling(UBEM)is an effective method to understand the energy use of building stock...The building sector is facing a challenge in achieving carbon neutrality due to climate change and urbanization.Urban building energy modeling(UBEM)is an effective method to understand the energy use of building stocks at an urban scale and evaluate retrofit scenarios against future weather variations,supporting the implementation of carbon emission reduction policies.Currently,most studies focus on the energy performance of archetype buildings under climate change,which is hard to obtain refined results for individual buildings when scaling up to an urban area.Therefore,this study integrates future weather data with an UBEM approach to assess the impacts of climate change on the energy performance of urban areas,by taking two urban neighborhoods comprising 483 buildings in Geneva,Switzerland as case studies.In this regard,GIS datasets and Swiss building norms were collected to develop an archetype library.The building heating energy consumption was calculated by the UBEM tool—AutoBPS,which was then calibrated against annual metered data.A rapid UBEM calibration method was applied to achieve a percentage error of 2.7%.The calibrated models were then used to assess the impacts of climate change using four future weather datasets out of Shared Socioeconomic Pathways(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).The results showed a decrease of 22%–31%and 21%–29%for heating energy consumption,an increase of 113%–173%and 95%–144%for cooling energy consumption in the two neighborhoods by 2050.The average annual heating intensity dropped from 81 kWh/m^(2) in the current typical climate to 57 kWh/m^(2) in the SSP5-8.5,while the cooling intensity rose from 12 kWh/m^(2) to 32 kWh/m^(2).The overall envelope system upgrade reduced the average heating and cooling energy consumption by 41.7%and 18.6%,respectively,in the SSP scenarios.The spatial and temporal distribution of energy consumption change can provide valuable information for future urban energy planning against climate change.展开更多
The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs an...The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.展开更多
基金Supported by Foundation for Young Scholars of Shaanxi Meteorological Bureau in 2016 and 2017(2016Y-7,2017Y-11)
文摘Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consumption and 26 ℃ as the basic temperature of CDD. The results indicated that the changing trends of CDD in Xi'an and Chang'an were basically identical within a year,and the demand for cooling refrigeration was large mainly from June to August,especially in July. The maximum of urban-rural difference of CDD between Xi'an and Chang'an appeared in June.In order to achieve the same temperature,energy needed by the urban area was 5-7 ℃·d more than the suburb from June to August. Temperature and the cooling energy consumption were closely related,and the correlation degree increased with the rise of temperature. The effects of temperature increase of 1 ℃ on cooling energy consumption rate in Xi'an were more obvious than that in Chang'an. In both Xi'an and Chang'an,the effects of temperature increase of 1 ℃ on cooling energy consumption rate in July and August were greater than that in May,June and September.Evaluation models of cooling energy consumption in summer in Xi'an and Chang'an were built using temperature anomaly and CDD variability and can be applied to business systems.
文摘Nowadays, air conditioning, a relatively energy-intensive method, is still the main way to cooling buildings. This paper proposes two designs of thin film which uses photonic crystal and is based on theories of black-body radiation and electrodynamics. By different designs, the two thin films have disparate photonic band gap, making them respectively suitable for wall and windows. As a new type of material for buildings, it has distinguished advantages of low-energy consumption and high efficiency.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707206)
文摘The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.
基金Project(51825802)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2018YFE0106100)supported by the National Key R&D Program of China。
文摘Passive house has been constructed in China on a large-scale over the past couple years for its great energy saving potential.However,research indicates that there is a significant discrepancy in energy performance for heating and cooling between passive houses in different climate zones.Therefore,this research develops a comparative analysis on the energy saving potential of passive houses with the conventional around China.A sensitivity analysis of thermal characteristics of building envelope(insulation of exterior walls and windows,and airtightness)on energy consumption is further carried out to improve the climate adaptability of passive house.Moreover,the variation of energy consumption under different heat gain intensity is also compared,to evaluate the effects of envelope thermal characteristics comprehensively.Results suggest that the decrease of exterior wall insulation leads to the greatest increase in energy consumption,especially in severe cold zone in China.However,the optimal insulation may change with the internal heat gain intensity,for instance,the decrease of insulation(from 0.4 to 1.0 W/(m^(2)·K))could reduce the energy consumption by 4.65 kW·h/(m^(2)·a)when the heat gain increases to 20 W/m^(2)for buildings in Hot Summer and Cold Winter zone in China.
基金This paper is supported by the National Natural Science Foundation of China(NSFC)through Grant No.51908204the Natural Science Foundation of Hunan Province of China through Grant No.2020JJ3008Supports of the Sweden’s innovation agency(VINNOVA-MIRAI)and the Crafoord Foundation are acknowledged.
文摘The building sector is facing a challenge in achieving carbon neutrality due to climate change and urbanization.Urban building energy modeling(UBEM)is an effective method to understand the energy use of building stocks at an urban scale and evaluate retrofit scenarios against future weather variations,supporting the implementation of carbon emission reduction policies.Currently,most studies focus on the energy performance of archetype buildings under climate change,which is hard to obtain refined results for individual buildings when scaling up to an urban area.Therefore,this study integrates future weather data with an UBEM approach to assess the impacts of climate change on the energy performance of urban areas,by taking two urban neighborhoods comprising 483 buildings in Geneva,Switzerland as case studies.In this regard,GIS datasets and Swiss building norms were collected to develop an archetype library.The building heating energy consumption was calculated by the UBEM tool—AutoBPS,which was then calibrated against annual metered data.A rapid UBEM calibration method was applied to achieve a percentage error of 2.7%.The calibrated models were then used to assess the impacts of climate change using four future weather datasets out of Shared Socioeconomic Pathways(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).The results showed a decrease of 22%–31%and 21%–29%for heating energy consumption,an increase of 113%–173%and 95%–144%for cooling energy consumption in the two neighborhoods by 2050.The average annual heating intensity dropped from 81 kWh/m^(2) in the current typical climate to 57 kWh/m^(2) in the SSP5-8.5,while the cooling intensity rose from 12 kWh/m^(2) to 32 kWh/m^(2).The overall envelope system upgrade reduced the average heating and cooling energy consumption by 41.7%and 18.6%,respectively,in the SSP scenarios.The spatial and temporal distribution of energy consumption change can provide valuable information for future urban energy planning against climate change.
文摘The current article presents conceptual,preliminary and detailed aero-thermal redesign of a typical high pressure turbine nozzle guide vane.Design targets are lower coolant consumption,reduced manufacturing costs and improved durability.These goals are sought by 25%reduction in vane count number and lower number of airfoils per segment.Design challenges such as higher airfoil loading,associate aerodynamic losses and higher thermal loads are discussed.In order to maximize coolant flow reduction and avoid higher aerodynamic losses,airfoil Mach distribution is carefully controlled.There has been an effort to limit design changes so that the proven design features of the original vane are used as much as possible.Accordingly,the same cooling concept is used with minor modifications of the internal structures in order to achieve desired coolant flow and internal heat transfer distribution.Platforms of the new design are quite similar to the original one except for cooling holes and application of thermal barrier coating(TBC).Detailed aerodynamics/heat transfer simulations reveals that the reduced trailing edge(T.E.)blockage and skin friction dominated the negative effect of increased secondary losses.As a result the reduced design performs acceptable in terms of total pressure loss and improving stage efficiency for a wide range of varying pressure ratio.Moreover,more than 20%cooling mass flow can be saved;while maximum and average metal temperatures as well as cross sectional temperature gradients have not been changed much.