Forty-eight samples are chosen to discuss the distribution in space and time of the cooling fluctuation events during Holocene in the tropical zone of China in this paper. The authors consider that the Neoglaciations ...Forty-eight samples are chosen to discuss the distribution in space and time of the cooling fluctuation events during Holocene in the tropical zone of China in this paper. The authors consider that the Neoglaciations II and III (or Cooling Event) have a widespread impact on the drop in temperature of 1–2 °C or less than 2 °C. The YD Event was dated at 11,300-10,200 a BP in the tropical mainland and its dating is 11,400-10,500 a BP in the sea area with a drop in temperature of 4–6 °C. The distribution of Event B and Neoglaciation I is taking a position of north, with a drop in temperature of 2.5–3.0 °C. The Cooling Event shows the temporality in time. The Cooling Event shows the limitation of regional distribution with a drop in temperature of less than 1.5°C. The more recent the cooling event is, the smaller the drop amplitude in temperature will be. In the eastern part of tropical zone seven events are complete in all varieties but the cooling fluctuation is weaker in the western part. In Hainan Island and South China Sea the appearance of cooling fluctuations is synchronous with each other.展开更多
A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody direc...A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody directly, the internal factors can be obtained. Then, by combining the calibration result of infrared imaging system at an arbitrary ambient temperature, the output drift can be calculated and compensated at various integration time and ambient temperatures. Experimental results indicate that the proposed method can eliminate the effect of ambient temperature fluctuation on the system output efficiently.展开更多
基金National Natural Science Foundation of China, No.49771010No. 49271070
文摘Forty-eight samples are chosen to discuss the distribution in space and time of the cooling fluctuation events during Holocene in the tropical zone of China in this paper. The authors consider that the Neoglaciations II and III (or Cooling Event) have a widespread impact on the drop in temperature of 1–2 °C or less than 2 °C. The YD Event was dated at 11,300-10,200 a BP in the tropical mainland and its dating is 11,400-10,500 a BP in the sea area with a drop in temperature of 4–6 °C. The distribution of Event B and Neoglaciation I is taking a position of north, with a drop in temperature of 2.5–3.0 °C. The Cooling Event shows the temporality in time. The Cooling Event shows the limitation of regional distribution with a drop in temperature of less than 1.5°C. The more recent the cooling event is, the smaller the drop amplitude in temperature will be. In the eastern part of tropical zone seven events are complete in all varieties but the cooling fluctuation is weaker in the western part. In Hainan Island and South China Sea the appearance of cooling fluctuations is synchronous with each other.
文摘A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody directly, the internal factors can be obtained. Then, by combining the calibration result of infrared imaging system at an arbitrary ambient temperature, the output drift can be calculated and compensated at various integration time and ambient temperatures. Experimental results indicate that the proposed method can eliminate the effect of ambient temperature fluctuation on the system output efficiently.