This paper will present several passive-cooling technologies and design features that can be adopted to reduce building heat gain without the need of excess energy consumption. A typical residential unit will be selec...This paper will present several passive-cooling technologies and design features that can be adopted to reduce building heat gain without the need of excess energy consumption. A typical residential unit will be selected as case study and a three basic passive cooling strategies were selected to enhance the building envelop, as well as using appropriate shading devices and green roofing system that prove to be a good environment quality improver. IES energy simulation software will be used to evaluate the performance of the building. The study revealed a number of significant findings in reducing the energy consumption and enhancing the tenants' thermal comfort. American Society of Heating Refrigerating and Airconditioning Engineer (ASHRAE) standards specially via improving the performance of building envelop because it is the interface between internal and external environment. Moreover, improving the building envelope has recorded that overall energy and chiller energy consumption can be reduced up to 10.8% and 21.6% respectively, Therefore, it is anticipated that further reductions can be achieved via applying more passive cooling strategies. Finally, it could argue that the results of this paper will not only be applicable to Bahrain but also many countries that have similar climatic and environmental context.展开更多
It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate...It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate international models from ASHRAE Standard 55 and EN16798-1.This study,however,has instead considered a regional Brazilian adaptive comfort model.This study investigates the energy demand arising from the use of a local Brazilian comfort model in order to assess the energy implications from the use of the worldwide ASHRAE Standard 55 adaptive model and various fixed setpoint temperatures.All of Brazil’s climate zones,full air-conditioning,mixed-mode building operating modes,present-day climate change scenarios,and future scenarios—specifically Representative Concentration Pathways(RCP)2.6,4.5,and 8.5 for the years 2050 and 2100—have all been taken into account in building energy simulations.The use of adaptive setpoint temperatures based on the Brazilian local model considering mixed-mode has been found to significantly reduce energy consumption when compared to static setpoint temperatures(average energy-saving values ranging from 52%to 58%)and the ASHRAE 55 adaptive model(average values ranging from 15%to 21%).Considering climate change and the mixed-mode Brazilian model,the overall energy demand for the three groups of climatic zones(annual average outdoor temperatures≤21℃,>21 and≤25℃and>25℃)ranged between 2%decrease and 5%increase,4%and 27%increase,and 13%and 45%increase,respectively.It is concluded as a consequence that setting setpoint temperatures based on the Brazilian local adaptive comfort model is a very efficient energy-saving method.展开更多
Public buildings such as libraries consume a vast amount of cooling energy for maintaining a comfortable and stable indoor environment in summer,especially in the hot-humid climate.This study used a case study approac...Public buildings such as libraries consume a vast amount of cooling energy for maintaining a comfortable and stable indoor environment in summer,especially in the hot-humid climate.This study used a case study approach to discuss the effect of low-energy strategies that can be applied to improve indoor thermal environment and cooling energy consumption of library buildings in hot and humid cities like Nanning City(a southern city,China).The use of cooling window shutters(a shutter with the effects of shading and evaporative cooling)and ceiling fans for generating airflow was considered as applicable energy-saving measures in this study,and a university library was selected as the study building in which the two energy-saving measures were employed.The SET*and annual cooling load before and after the adoption of the proposed measures were quantitatively investigated with a building energy consumption simulation software(DesignBuilder).Simulation results showed that the daytime SET*values can be reduced by 3.0℃and 4.5℃respectively on a typical summer day after the use of the cooling shutters and ceiling fans.Moreover,the cooling loads can also be decreased by 8.4%and 16.6%respectively.Particularly,the combination of these two measures enabled the daytime SET*value and annual cooling load lower by 7.0℃and 60.8%respectively.展开更多
It is well known that the passive strategies applying in traditional buildings respond satisfactory to climatic requirements and succeed to provide maximum indoor comfort with minimum energy consumption.From this poin...It is well known that the passive strategies applying in traditional buildings respond satisfactory to climatic requirements and succeed to provide maximum indoor comfort with minimum energy consumption.From this point of view,it is interesting to quantitatively assess the effectiveness of the vernacular strategies to improve the environmental performance of the building's envelope under desert climate conditions.The research tries to address this issue and was undertaken in southern Algeria where a very hot and arid climate prevails.The effect of some selected passive cooling strategies on enhancing the building's envelope climate performance was examined.These strategies are inspired from the local vernacular architecture,and they are expected to provide satisfactory indoor thermal comfort for users and to reduce the energy cooling demand from residential buildings.Applying field and computational investigations,two existing residential buildings were tested:a typical residential unit and a contemporary vernacular(neo-vernacular)building.In the latter,climate responsive strategies inspired from vernacular architecture were applied.A comparison based on site measurements was carried out on the two selected buildings which differ from their envelope design properties and components.展开更多
文摘This paper will present several passive-cooling technologies and design features that can be adopted to reduce building heat gain without the need of excess energy consumption. A typical residential unit will be selected as case study and a three basic passive cooling strategies were selected to enhance the building envelop, as well as using appropriate shading devices and green roofing system that prove to be a good environment quality improver. IES energy simulation software will be used to evaluate the performance of the building. The study revealed a number of significant findings in reducing the energy consumption and enhancing the tenants' thermal comfort. American Society of Heating Refrigerating and Airconditioning Engineer (ASHRAE) standards specially via improving the performance of building envelop because it is the interface between internal and external environment. Moreover, improving the building envelope has recorded that overall energy and chiller energy consumption can be reduced up to 10.8% and 21.6% respectively, Therefore, it is anticipated that further reductions can be achieved via applying more passive cooling strategies. Finally, it could argue that the results of this paper will not only be applicable to Bahrain but also many countries that have similar climatic and environmental context.
基金This study was funded by the Urban Innovative Actions initiative(European Commission),under the research project UIA04-212 Energy Poverty Intelligence Unit(EPIU),the Spanish Ministry of Science and Innovation,under the research project PID2021-122437OA-I00“Positive Energy Buildings Potential for Climate Change Adaptation and Energy Poverty Mitigation(+ENERPOT)”the Andalusian Ministry of Development,Articulation of the Territory and Housing,under the research project US.22-02“Implicaciones en la mitigación del cambio climático y de la pobreza energética mediante nuevo modelo de confort adaptativo para viviendas sociales(ImplicAdapt)”.The authors also acknowledge the support provided by the Thematic Network 722RT0135“Red Iberoamericana de Pobreza Energética y Bienestar Ambiental(RIPEBA)”financed by the call for Thematic Networks of the CYTED Program for 2021.
文摘It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate international models from ASHRAE Standard 55 and EN16798-1.This study,however,has instead considered a regional Brazilian adaptive comfort model.This study investigates the energy demand arising from the use of a local Brazilian comfort model in order to assess the energy implications from the use of the worldwide ASHRAE Standard 55 adaptive model and various fixed setpoint temperatures.All of Brazil’s climate zones,full air-conditioning,mixed-mode building operating modes,present-day climate change scenarios,and future scenarios—specifically Representative Concentration Pathways(RCP)2.6,4.5,and 8.5 for the years 2050 and 2100—have all been taken into account in building energy simulations.The use of adaptive setpoint temperatures based on the Brazilian local model considering mixed-mode has been found to significantly reduce energy consumption when compared to static setpoint temperatures(average energy-saving values ranging from 52%to 58%)and the ASHRAE 55 adaptive model(average values ranging from 15%to 21%).Considering climate change and the mixed-mode Brazilian model,the overall energy demand for the three groups of climatic zones(annual average outdoor temperatures≤21℃,>21 and≤25℃and>25℃)ranged between 2%decrease and 5%increase,4%and 27%increase,and 13%and 45%increase,respectively.It is concluded as a consequence that setting setpoint temperatures based on the Brazilian local adaptive comfort model is a very efficient energy-saving method.
基金supported from the National Natural Science Foundation of China(No.51968003)the Guangxi Science and Technology Project(No.AB16380193).
文摘Public buildings such as libraries consume a vast amount of cooling energy for maintaining a comfortable and stable indoor environment in summer,especially in the hot-humid climate.This study used a case study approach to discuss the effect of low-energy strategies that can be applied to improve indoor thermal environment and cooling energy consumption of library buildings in hot and humid cities like Nanning City(a southern city,China).The use of cooling window shutters(a shutter with the effects of shading and evaporative cooling)and ceiling fans for generating airflow was considered as applicable energy-saving measures in this study,and a university library was selected as the study building in which the two energy-saving measures were employed.The SET*and annual cooling load before and after the adoption of the proposed measures were quantitatively investigated with a building energy consumption simulation software(DesignBuilder).Simulation results showed that the daytime SET*values can be reduced by 3.0℃and 4.5℃respectively on a typical summer day after the use of the cooling shutters and ceiling fans.Moreover,the cooling loads can also be decreased by 8.4%and 16.6%respectively.Particularly,the combination of these two measures enabled the daytime SET*value and annual cooling load lower by 7.0℃and 60.8%respectively.
文摘It is well known that the passive strategies applying in traditional buildings respond satisfactory to climatic requirements and succeed to provide maximum indoor comfort with minimum energy consumption.From this point of view,it is interesting to quantitatively assess the effectiveness of the vernacular strategies to improve the environmental performance of the building's envelope under desert climate conditions.The research tries to address this issue and was undertaken in southern Algeria where a very hot and arid climate prevails.The effect of some selected passive cooling strategies on enhancing the building's envelope climate performance was examined.These strategies are inspired from the local vernacular architecture,and they are expected to provide satisfactory indoor thermal comfort for users and to reduce the energy cooling demand from residential buildings.Applying field and computational investigations,two existing residential buildings were tested:a typical residential unit and a contemporary vernacular(neo-vernacular)building.In the latter,climate responsive strategies inspired from vernacular architecture were applied.A comparison based on site measurements was carried out on the two selected buildings which differ from their envelope design properties and components.