Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for...Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.展开更多
A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel...A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel, the maximum difference of the photoelectric conversion efficiency is 2.6%, the temperature reduces maximally by 4.7℃, the output power increases maximally by 8.4% for the solar panel with heat pipe using air-cooling, when the daily radiation value is 26.3 MJ. Compared with the solar panel with heat pipe using air-cooling, the maximum difference of the photoelectric conversion efficiency is 3%, the temperature reduces maximally by 8℃, the output power increases maximally by 13.9% for the solar panel with heat pipe using water-cooling, when the daily radiation value is 21.9 MJ.展开更多
Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperatu...Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.展开更多
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover...Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.展开更多
The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling...The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling effects of embedded pipes plays an essential role in the design of the structure and its cooling system. In this study, the singular boundary method, a semi-analytical meshless technique, was employed to analyze the temperature distribution. A numerical algorithm solved the transient temperature field with consideration of the effects of cooling pipe specification, isolation of heat of hydration, and ambient temperature. Numerical results are verified through comparison with those of the finite element method, demonstrating that the proposed approach is accurate in the simulation of the thermal field in concrete structures with a water cooling pipe.展开更多
This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing o...This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.展开更多
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved...Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.展开更多
Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming an...Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.展开更多
The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects th...The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects the final dimensional controls at the later stage i.e. after mechanical expansion of the line pipe. The second part is to make right welding joint geometry to make the final long seam weld of line pipe. The welding joint geometry ultimately controls soundness of final seam weld at later stage i.e. during submerged arc welding of the line pipe. As far as curvature or shape of line pipe is concerned, important operation is making the required curvature along the edges of TMCP and ACC (Thermo mechanical controlled processing and accelerated cooling process) plate for line pipe (Plate Edge Crimping press) up to the 150 mm in width minimum and forming of the line pipe at J-C-O press. The selection of dies with proper hardness and curvature in both the operation plays a vital role in the formation of line pipes. The main parameters of selection dies (Tools) are size of line pipe for which dies/tools are to be made i.e. the diameter of line pipe, thickness of line pipe and most important is grade of line pipe (Strength level). The grade or strength level decides amount of spring back behavior of the steel Plate. The spring back behavior again varies from steel mill to steel mill in the same grade of HR plate. This is because the each steel mill has its own manufacturing procedures to produce the TMCP and ACC plate. The plate for line pipe is produced through TMCP (Thermo mechanical controlled processing) and accelerated cooling process. In this process the strength level is achieved by the chemical composition of the slab, thickness of the slab, reheating temperature, roughing temperature at which reduction in the thickness, finish rolling temperature and finally the accelerated cooling temperature rate.展开更多
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ...An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.展开更多
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba...Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.展开更多
In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy sa...In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy saving and energy consumption in data center, 5G network and other fields. The gravity heat pipe double cycle air conditioning is a kind of room air conditioning which uses natural cooling source with high efficiency. According to the outdoor meteorological parameters of ten typical cities in China, the calculation model of unit hybrid refrigeration mode is established by using integral method. A simplified algorithm for statistical summation is proposed. Then it compares with the same type of refrigerant pump air conditioner, water-cooled chiller and natural cooling plate. The results show that the annual operation time of gravity heat pipe double cycle air conditioner is 50.8% longer than that of refrigerant pump air conditioner. Then the calculation model is verified by the annual actual operation data of a data center in Changsha. The results show that the double cycle air conditioner with gravity heat pipe can save about 34% energy compared with the chiller. The accuracy of the calculation model is 17.5%, which meets the engineering accuracy requirements. The application of gravity heat pipe double cycle air conditioning in hot summer and cold winter area is a scheme worthy of popularization and application.展开更多
Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient con...Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient condition was designed thermostatic chamber where was monitoring temperature course on main parts of cooling device (energy converter, air cooler and heat pipes) at various position of cooling device. It was found, if the cooling device is in tilt position the cooling performance is better. But if the tilt angel of gravity assisted heat pipe is higher the heat transfer is lower. From reason improve heat transfer cooling device at tilt angle are manufactured heat pipes with the sintered, mesh screen and grooved capillary structures and tested their thermal performance at vertical and tilt angel 45~ position by calorimetric method. Article describes manufacturing process and thermal performance measuring method of wick heat pipes. This experiment testify that the wick heat pipe is able operate at tilt angle position than gravity assisted heat pipe and application of wick heat pipes into cooling device will improve his cooling performance.展开更多
文摘Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.
文摘A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel, the maximum difference of the photoelectric conversion efficiency is 2.6%, the temperature reduces maximally by 4.7℃, the output power increases maximally by 8.4% for the solar panel with heat pipe using air-cooling, when the daily radiation value is 26.3 MJ. Compared with the solar panel with heat pipe using air-cooling, the maximum difference of the photoelectric conversion efficiency is 3%, the temperature reduces maximally by 8℃, the output power increases maximally by 13.9% for the solar panel with heat pipe using water-cooling, when the daily radiation value is 21.9 MJ.
基金supported by the National Natural Science Foundation of China(Grant No.51109071)
文摘Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.
文摘Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.
基金supported by the National Natural Science Foundation of China(Grants No.11572111 and 11372097)the 111 Project(Grant No.B12122)
文摘The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling effects of embedded pipes plays an essential role in the design of the structure and its cooling system. In this study, the singular boundary method, a semi-analytical meshless technique, was employed to analyze the temperature distribution. A numerical algorithm solved the transient temperature field with consideration of the effects of cooling pipe specification, isolation of heat of hydration, and ambient temperature. Numerical results are verified through comparison with those of the finite element method, demonstrating that the proposed approach is accurate in the simulation of the thermal field in concrete structures with a water cooling pipe.
文摘This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.
基金Project(U0834002) supported by the Joint Funds of the National Nature Science Foundation of China and Guangdong ProvinceProject (2009ZM0134) supported by the Foundational Research Funds for the Central Universities in China
文摘Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.
基金Project(51205423)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(S2012040007715)supported by Natural Science Foundation of Guangdong Province,ChinaProject(20120171120036)supported by New Teachers’Fund for Doctor Stations,Ministry of Education,China
文摘Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.
文摘The line pipe forming operation can be divided into two parts, first is to achieve the required shape in terms of curvature and ovality after formation of the line pipe. The curvature and ovality ultimately effects the final dimensional controls at the later stage i.e. after mechanical expansion of the line pipe. The second part is to make right welding joint geometry to make the final long seam weld of line pipe. The welding joint geometry ultimately controls soundness of final seam weld at later stage i.e. during submerged arc welding of the line pipe. As far as curvature or shape of line pipe is concerned, important operation is making the required curvature along the edges of TMCP and ACC (Thermo mechanical controlled processing and accelerated cooling process) plate for line pipe (Plate Edge Crimping press) up to the 150 mm in width minimum and forming of the line pipe at J-C-O press. The selection of dies with proper hardness and curvature in both the operation plays a vital role in the formation of line pipes. The main parameters of selection dies (Tools) are size of line pipe for which dies/tools are to be made i.e. the diameter of line pipe, thickness of line pipe and most important is grade of line pipe (Strength level). The grade or strength level decides amount of spring back behavior of the steel Plate. The spring back behavior again varies from steel mill to steel mill in the same grade of HR plate. This is because the each steel mill has its own manufacturing procedures to produce the TMCP and ACC plate. The plate for line pipe is produced through TMCP (Thermo mechanical controlled processing) and accelerated cooling process. In this process the strength level is achieved by the chemical composition of the slab, thickness of the slab, reheating temperature, roughing temperature at which reduction in the thickness, finish rolling temperature and finally the accelerated cooling temperature rate.
文摘An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.
文摘Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.
文摘In order to achieve the goal of “carbon peak” in 2030 and “carbon neutralization” in 2060, the task of energy conservation has risen to the national strategic level, and its work is urgent. It focuses on energy saving and energy consumption in data center, 5G network and other fields. The gravity heat pipe double cycle air conditioning is a kind of room air conditioning which uses natural cooling source with high efficiency. According to the outdoor meteorological parameters of ten typical cities in China, the calculation model of unit hybrid refrigeration mode is established by using integral method. A simplified algorithm for statistical summation is proposed. Then it compares with the same type of refrigerant pump air conditioner, water-cooled chiller and natural cooling plate. The results show that the annual operation time of gravity heat pipe double cycle air conditioner is 50.8% longer than that of refrigerant pump air conditioner. Then the calculation model is verified by the annual actual operation data of a data center in Changsha. The results show that the double cycle air conditioner with gravity heat pipe can save about 34% energy compared with the chiller. The accuracy of the calculation model is 17.5%, which meets the engineering accuracy requirements. The application of gravity heat pipe double cycle air conditioning in hot summer and cold winter area is a scheme worthy of popularization and application.
文摘Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient condition was designed thermostatic chamber where was monitoring temperature course on main parts of cooling device (energy converter, air cooler and heat pipes) at various position of cooling device. It was found, if the cooling device is in tilt position the cooling performance is better. But if the tilt angel of gravity assisted heat pipe is higher the heat transfer is lower. From reason improve heat transfer cooling device at tilt angle are manufactured heat pipes with the sintered, mesh screen and grooved capillary structures and tested their thermal performance at vertical and tilt angel 45~ position by calorimetric method. Article describes manufacturing process and thermal performance measuring method of wick heat pipes. This experiment testify that the wick heat pipe is able operate at tilt angle position than gravity assisted heat pipe and application of wick heat pipes into cooling device will improve his cooling performance.