The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology....The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively.展开更多
基金financially supported by the National High Technology Research and Development Program(No.2013AA031002)
文摘The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively.