期刊文献+
共找到1,685篇文章
< 1 2 85 >
每页显示 20 50 100
Co-pyrolysis of bituminous coal and biomass in a pressured fluidized bed 被引量:8
1
作者 Yong Huang Ningbo Wang +2 位作者 Qiaoxia Liu Wusheng Wang Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1666-1673,共8页
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature wa... An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis. 展开更多
关键词 Bituminous COAL BIOMASS CO-PYROLYSIS pressured fluidized bed SYNERGISTIC EFFECT
下载PDF
CFD simulation of pressure fluctuation characteristics in the gas-solid fluidized bed:Comparisons with experiments 被引量:3
2
作者 Wang Qingcheng Zhang Kai Gu Hongyan 《Petroleum Science》 SCIE CAS CSCD 2011年第2期211-218,共8页
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua... A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface. 展开更多
关键词 Gas-solid fluidized bed CFD simulation experimental measurements propagation ofpressure fluctuations pressure wave velocity pressure fluctuation frequency
下载PDF
Wavelet analysis of pressure fluctuation signals in a gas-solid fluidized bed 被引量:8
3
作者 甄玲 王晓萍 +2 位作者 黄海 陈伯川 黄春燕 《Journal of Zhejiang University Science》 CSCD 2002年第1期52-56,共5页
It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize ... It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably. 展开更多
关键词 wavelet analysis pressure fluctuation multi\|resolution analysis fluidized bed ELF
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
4
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
下载PDF
Characterization of Pressure Signals in Fluidized Beds Loaded with Large Particles Using Wigner Distribution Analysis: Feasibility of Diagnosis of Agglomeration 被引量:2
5
作者 张建胜 吕俊复 +4 位作者 王昕 张海 岳光溪 SUDA Toshiyuki SATO Junichi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期24-29,共6页
An experimental verification is reported on the early predicting index of agglomeration in bubbling fluidized bed. Coarse quartz sand, which has the same density but larger diameter than the bed material, was used to ... An experimental verification is reported on the early predicting index of agglomeration in bubbling fluidized bed. Coarse quartz sand, which has the same density but larger diameter than the bed material, was used to simulate the initial agglomerated particle. Wigner distribution was used to analyze the pressure fuctuation of the tested bed, and the average amplitude of local domain frequency (LDF) and local peak weighted average frequency (LPWA) under different operating conditions were measured and compared. The results showed that the LDF is sensitive to the agglomeration phenomena and had quick response to the incipient agglomeration in fluidized beds. It can be concluded from the results that these two parameters could be taken as the characteristic indexes to the agglomeration in fuidized beds. 展开更多
关键词 bubbling fluidized bed pressure fluctuation AGGLOMERATION Wigner distribution
下载PDF
Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation
6
作者 Jinnan Guo Daoyin Liu +2 位作者 Jiliang Ma Cai Liang Xiaoping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期167-176,共10页
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-... The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient. 展开更多
关键词 pressurized circulating fluidized bed MP-PIC method Residence time distribution Axial dispersion coefficient
下载PDF
Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed 被引量:4
7
作者 Sheng Cheng Duan Chenlong +2 位作者 Zhao Yuemin Dong Liang Luo Zhenfu 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期461-467,共7页
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and prop... Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis. 展开更多
关键词 Air dense medium fluidized bed pressure fluctuations Frequency domain analysis Wavelet analysis Particle distribution function
下载PDF
Time-series analysis of the characteristic pressure fluctuations in a conical fluidized bed with negative pressure 被引量:1
8
作者 Sheng Fang Yanding Wei +2 位作者 Lei Fu Geng Tian Haibin Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期87-99,共13页
The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass an... The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass and particle size.The pressure fluctuation signals are analyzed by the time and the frequency domain methods.A method for absolutely characterizing the degree of the energy concentration at the main frequency is proposed,where the calculation is to divide the original power spectrum by the average signal power.A phenomenon where the gas velocity curve temporarily stops growing is observed when the material mass is light,and the particle size is small.The standard deviation and kurtosis both rapidly change at the minimum fluidization velocity and thus can be used to determine the flow regime,and the variation rule of the kurtosis is independent of both the material mass and particle size.In the initial fluidization stage,the dominant pressure signal comes from the material movement;with the increase in the gas velocity,the power of a 2.5 Hz signal continues to increase.A method of dividing the main frequency by the average cycle frequency can conveniently determine the fluidized state,and a novel concept called stable fluidized zone proposed in this paper can be obtained.Controlling the gas velocity within the stable fluidized zone ensures that the fluidized bed consistently remains in a stable fluidized state. 展开更多
关键词 Conical fluidized bed Negative pressure pressure fluctuation Time-series analysis Characteristic value Fluidized state
下载PDF
Rock Pressure on Tunnel with Shallow Depth in Geologically Inclined Bedding Strata 被引量:1
9
作者 周晓军 李泽龙 +1 位作者 杨昌宇 高扬 《Journal of Southwest Jiaotong University(English Edition)》 2006年第1期52-62,共11页
The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding ... The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible. 展开更多
关键词 Rock pressure Tunnel lining structure Inclined bedding strata Cohesion of bedding Internal fi'iction angle Safety oftunnel structure
下载PDF
Hydrogen Purification Performance of Pressure Swing Adsorption Based on Cu-BTC/zeolite 5A Layered Bed 被引量:1
10
作者 SUN Kang YANG Tianqi +2 位作者 MA Shuo YE Feng XIAO Jinsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期815-822,共8页
A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hyd... A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hydrogen purification performance.By comparing its simulation results with the experimental data,the adsorption isotherm model was validated and could be used to accurately describe the adsorption process of the gas mixture on the two adsorbents.The breakthrough curves of the mixed gas on the layered bed were studied to verify the correctness of the established simulation models.Based on the validated model,the performance of the PSA system based on the layered bed was carried out,including the hydrogen purity and recovery.The simulation results show that the hydrogen purification system based on the layered bed model can achieve hydrogen purity of 95.469% and hydrogen recovery of 83.219%.Moreover,a parametric study was carried out and its results show that reductions in feed flow rate and adsorption time result in an increase in hydrogen purity and a decrease in hydrogen recovery.A longer equalization time between the two adsorption beds can simultaneously increase the hydrogen purity and recovery. 展开更多
关键词 hydrogen purification pressure swing adsorption layered bed Cu-BTC zeolite 5A
下载PDF
Multi-scale and multi-fractal analysis of pressure fluctuation in slurry bubble column bed reactor 被引量:1
11
作者 王兴军 胡立舜 +3 位作者 沈军杰 余志楠 王辅臣 于遵宏 《Journal of Central South University of Technology》 EI 2007年第5期696-700,共5页
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th... The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble. 展开更多
关键词 pressure fluctuation R/S analysis MULTI-SCALE MULTI-FRACTAL bubble column bed reactor
下载PDF
Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor 被引量:7
12
作者 Shuai Cheng Dengguo Lai +5 位作者 Zhen Shi Leisheng Hong Jianling Zhang Xi Zeng Shiqiu Gao Guangwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第4期507-515,共9页
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting inter... Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics. 展开更多
关键词 pyrolysis absolute volatile phenols suppression evident clarified contained heating bottle
下载PDF
Heat Transfer Characteristics and Pressure Drop in a Horizontal Circulating Fluidized Bed Evaporator
13
作者 Xu Liang Feng Jiang +5 位作者 Guopeng Qi Jinjin Wang Xinhua Dong Wenyue Jing Ruijia Li Xiulun Li 《Transactions of Tianjin University》 EI CAS 2021年第6期487-504,共18页
A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount o... A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed. 展开更多
关键词 Heat transfer characteristics pressure drop Horizontal circulating fluidized bed evaporator Vertical heights Fouling prevention and removal
下载PDF
Radial heat transport in packed beds-I: Experimental investigation of heat transfer coefficients of pellets and monolith catalysts at atmospheric and high pressures
14
作者 Mohamed A. Al-Meshragi Hadi A. Elakrami Hesham G. Ibrahim 《Journal of Chemistry and Chemical Engineering》 2009年第6期1-14,共14页
The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of ... The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths. 展开更多
关键词 heat transfer packed beds pseudo-homogeneous model pressure effect
下载PDF
Mechanism Study of Lateral Bed Pressure Wave of Large Scale CFB Boilers
15
《中国电机工程学报》 EI CSCD 北大核心 2013年第20期I0001-I0016,共16页
关键词 循环流化床(CFB)锅炉 压力波动 机理 炉床 低负荷 变压
下载PDF
Combustion and pollutant emission characteristics of coal in a pressurized fluidized bed under O_2/ CO_2 atmosphere 被引量:4
16
作者 段元强 段伦博 +1 位作者 胡海华 赵长遂 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期188-193,共6页
The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release proces... The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release process. Two indices, the maximum concentration and the total emission, were applied to quantitatively evaluate the influence of several different operating parameters such as pressure, atmosphere and temperature on the formation of NO and SO2 during coal combustion in the fluidized bed. The experimental results show that the releasing profiles of CO, NO and SO2 during coal combustion under a pressurized oxy- fuel atmosphere are similar to those under a pressurized air atmosphere, and the curves of measured gas components are all unimodal. Under the oxy-fuel condition, pressure increasing from 0.1 to 0.7 MPa can cause the inhibition of NO and SO2 emission. The elevation of temperature can lead to an increase in the maximum concentration and the total production of NO and SO2, and the increase under atmospheric pressure is higher than that under high pressure. 展开更多
关键词 pressurized oxy-fuel combustion fluidized bed SO2 emission NO emission
下载PDF
Numerical Simulation of Pressurized Spouted Fluidized Bed for Coal Semi-Gasification 被引量:2
17
作者 周山明 金保升 章名耀 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期319-325,共7页
Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into accoun... Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification. 展开更多
关键词 pressurized spouted fluidized bed coal gasification numerical simulation
下载PDF
Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed 被引量:3
18
作者 Zheng Gong Yingjuan Shao +2 位作者 Lei Pang Wenqi Zhong Chao Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1177-1183,共7页
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm... Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature (800℃-900℃), operating pressure (0.1-0.4 MPa), excess air level (16%-30%) and flow pattern on NOX and N2O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOX and N2O emissions, and the N2O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOX but enhance its conversion to N2O. With the rise of the excess air level and fluidization number, NOX emissions grow distinctly while N2O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure. 展开更多
关键词 pressurized fluidized bed COAL COMBUSTION Operating PARAMETER NOX N2O
下载PDF
Influence of Negative Pressure Gradient on Pressure Distribution and Gas-Solid Flow Pattern of Solid Feed Systems 被引量:1
19
作者 Zhang Meiju Pan Feng +2 位作者 Shao Guoqiang Ge Yu Zhang Lei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第2期104-110,共7页
A series of experiments on a solid feed system was performed to investigate the effect of negative pressure gradient on the gas-solid flow pattern and hydrodynamic characteristics.Based on the non-fluidized gas-solid ... A series of experiments on a solid feed system was performed to investigate the effect of negative pressure gradient on the gas-solid flow pattern and hydrodynamic characteristics.Based on the non-fluidized gas-solid two phase flow and particulate mechanics in the standpipe,a method for predicting the pressure of the air passing through the recycle chamber and the pressure drop through the loop seal slit in these systems is also presented.The predicted pressure profile along the negative pressure gradient from the proposed model exhibits a good agreement with the experimental data.The experimental data show that the gas flow in the standpipe is always upward in the negative pressure gradients,while the direction ofthe superficial gas velocity through the recycle chamber of the loop seal does not affect the pressure drop in standpipe.It increases with an increasing negative pressure gradient. 展开更多
关键词 fuidized bed solid feedsystem negative pressure gradient gas-solid fow pattern
下载PDF
Study on the distribution of PAHs in fly ash from coal and residual char combustion in a pressurized fluidized bed 被引量:2
20
作者 Hongcang ZHOU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期54-55,共2页
关键词 PAHS 加压燃烧 硫化床 飞尘
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部