Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power...With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.展开更多
In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid contro...In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.展开更多
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,...Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.展开更多
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block...Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net...Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated ...This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated under the leader-following approach.The algorithm provides smooth input signals to the agents’control channels,which avoids the chattering effect generated by the conventional sliding mode-based control protocols.Second,a new formation control scheme is developed by integrating smooth distributed consensus control protocols into the geometric pattern model to achieve three-dimensional formation tracking.The Lyapunov theory is used to prove the stability and convergence of both distributed consensus and formation controllers.The effectiveness of the proposed algorithms is demonstrated through simulation results.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propo...Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.展开更多
In this paper, we present a full scheme for the cooperative control of multiple unmanned aerial vehicle (UAV) helicopters. We adopt the leader-follower pattern to maintain a fixed geometrical formation while navigat...In this paper, we present a full scheme for the cooperative control of multiple unmanned aerial vehicle (UAV) helicopters. We adopt the leader-follower pattern to maintain a fixed geometrical formation while navigating the UAVs following certain trajectories. More specifically, the leader is commanded to fly on some predefined trajectories, and each follower is controlled to maintain its position in formation using the measurement of its inertial position and the information of the leader position and velocity, obtained through a wireless modem. More specifications are made for multiple UAV formation flight. In order to avoid possible collisions of UAV helicopters in the actual formation flight test, a collision avoidance scheme based on some predefined alert zones and protected zones is employed. Simulations and experimental results are presented to verify our design.展开更多
This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specifi...This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specified positions.The convex hull formed by these followers contains the leaders.We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology.Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence.Moreover,the conditions achieving enclosing control are established for both protocols.A special enclosing control with no leader located on the convex hull boundary under the protocols is studied,which can effectively prevent enclosing control failures caused by errors in the system.Moreover,several simulations are proposed to validate theoretical results and compare the differences between the three control protocols.Finally,experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system.展开更多
This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the ...This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws.展开更多
Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optima...Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.展开更多
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication dela...For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.展开更多
Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect ...Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金Supported by Science and Technology Projects of State Grid Corporation of China(JF2021018).
文摘With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.
文摘In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.
基金This research was supported by the National Natural Science Foundation of China(Grant No.71971016).On behalf of all co-authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
基金supported by the Natural Science Foundation of China under Grant 52162050R&D plan project for science and technology of China Railway(No.N2021G045).
文摘Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported in part by the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautical Science Foundation of China (Grant No. 20220001068001)National Natural Science Foundation of China (Grant No.61673327)+1 种基金Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. 2023-JC-QN-0733)China IndustryUniversity-Research Innovation Foundation (Grant No. 2022IT188)。
文摘Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
基金This work was supported by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(G-363-135-1438).
文摘This paper addresses the cooperative control problem of multiple unmanned aerial vehicles(multi-UAV)systems.First,a new distributed consensus algorithm for second-order nonlinear multi-agent systems(MAS)is formulated under the leader-following approach.The algorithm provides smooth input signals to the agents’control channels,which avoids the chattering effect generated by the conventional sliding mode-based control protocols.Second,a new formation control scheme is developed by integrating smooth distributed consensus control protocols into the geometric pattern model to achieve three-dimensional formation tracking.The Lyapunov theory is used to prove the stability and convergence of both distributed consensus and formation controllers.The effectiveness of the proposed algorithms is demonstrated through simulation results.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金jointly granted by the Science and Technology on Avionics Integration Laboratorythe Aeronautical Science Foundation(2016ZC15008)
文摘Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.
文摘In this paper, we present a full scheme for the cooperative control of multiple unmanned aerial vehicle (UAV) helicopters. We adopt the leader-follower pattern to maintain a fixed geometrical formation while navigating the UAVs following certain trajectories. More specifically, the leader is commanded to fly on some predefined trajectories, and each follower is controlled to maintain its position in formation using the measurement of its inertial position and the information of the leader position and velocity, obtained through a wireless modem. More specifications are made for multiple UAV formation flight. In order to avoid possible collisions of UAV helicopters in the actual formation flight test, a collision avoidance scheme based on some predefined alert zones and protected zones is employed. Simulations and experimental results are presented to verify our design.
基金supported in part by the National Natural Science Foundation of China(61703411,61834004)the Natural Science Foundation of Shaanxi Province(2017JM6016)。
文摘This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specified positions.The convex hull formed by these followers contains the leaders.We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology.Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence.Moreover,the conditions achieving enclosing control are established for both protocols.A special enclosing control with no leader located on the convex hull boundary under the protocols is studied,which can effectively prevent enclosing control failures caused by errors in the system.Moreover,several simulations are proposed to validate theoretical results and compare the differences between the three control protocols.Finally,experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system.
基金Project supported by the Beijing Jiaotong University Research Program,China(Grant No.RCS2014ZT18)the Fundamental Research Funds for Central Universities,China(Grant No.2015JBZ007)the National Natural Science Foundation of China(Grant Nos.61233001,61322307,and 61304196)
文摘This paper proposes cooperative adaptive control schemes for a train platoon to improve efficient utility and guarantee string stability. The control schemes are developed based on a bidirectional strategy, i.e., the information of proximal(preceding and following) trains is used in the controller design. Based on available proximal information(prox-info) of location, speed, and acceleration, a direct adaptive control is designed to maintain the tracking interval at the minimum safe distance. Based on available prox-info of location, an observer-based adaptive control is designed to achieve the same target, which alleviates the requirements of equipped sensors to measure prox-info of speed and acceleration. The developed schemes are capable of on-line estimating of the unknown system parameters and stabilizing the closed-loop system, the string stability of train platoon is guaranteed on the basis of Lyapunov stability theorem. Numerical simulation results are presented to verify the effectiveness of the proposed control laws.
文摘Natural selection opposes the evolution of cooperation unless specific mechanisms are at work in Prisoner's Dilemma. By taking advantage of the modern control theory, the controller design is discussed and the optimal control is designed for promoting cooperation based on the recent advances in mechanisms for the evolution of cooperation. Two con- trol strategies are proposed: compensation control strategy for the cooperator when playing against a defector and reward control strategy for cooperator when playing against a coop- erator. The feasibility and effectiveness of these control strategies for promoting cooperation in different stages are analyzed. The reward for cooperation can't prevent defection from being evolutionary stable strategy (ESS). On the other hand, compensation for the coopera- tor can't prevent defection from emerging and sustaining. By considering the effect and the cost, an optimal control scheme with constraint on the admissible control set is put forward. By analyzing the special nonlinear system of replicator dynamics, the exact analytic solution of the optimal control scheme is obtained based on the maximum principle. Finally, the effectiveness of the proposed method is illustrated by examples.
基金Supported by National Natural Science Foundation of China(Grant No.61371076)
文摘For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
文摘Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.