A co-operative contract to set up China’s largest joint-venture power project in Shandong Province, was initiated by.four partners on June 7 at Beijing’s Great Hall of the People. The project’s total investment is ...A co-operative contract to set up China’s largest joint-venture power project in Shandong Province, was initiated by.four partners on June 7 at Beijing’s Great Hall of the People. The project’s total investment is expected to be about $2.3 billion, of which a little over $1 billion will be raised overseas. The partners in the massive power projects are Shandong Electric Power Corp, Shandong International Trust and Investment Corp, Electricite de展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
Summary In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate pl...Summary In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity. However, little attention has been paid to their genetic association. This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants. These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.展开更多
In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers in...In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.展开更多
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net...Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.展开更多
Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the do...Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the downstream oil supply chain cannot be carried out smoothly.This paper intends to propose a multi-party coordination method to promote cooperation between oil shippers and pipeline operator by optimizing oil transportation,oil substitution and pipeline pricing schemes.An integrated game-theoretic modeling and analysis approach is developed to characterize the operation behaviors of all stakeholders in the downstream oil supply chain.The proposed mixed integer nonlinear programming model constrains supply and demand capacity,transportation routes,oil substitution rules and pipeline freight levels.Logarithm transformation and price discretization are introduced for model linear approximation.Simulation experiments are carried out in the oil distribution system in South China.The results show that compared to the business-as-usual scheme,the new scheme saves transportation cost by 3.48%,increases pipeline turnover by 5.7%,and reduces energy consumption and emissions by 7.66%and 6.77%.It is proved that the proposed method improves the revenue of the whole system,achieves fair revenue distribution,and also improves the energy and environmental benefits of the oil supply chain.展开更多
This paper studies the evolutionary process of cooperative behavior in a public goods game model with heterogeneous investment strategies in square lattices.In the proposed model,players are divided into defectors,coo...This paper studies the evolutionary process of cooperative behavior in a public goods game model with heterogeneous investment strategies in square lattices.In the proposed model,players are divided into defectors,cooperators and discreet investors.Among these,defectors do not participate in investing,discreet investors make heterogeneous investments based on the investment behavior and cooperation value of their neighbors,and cooperators invest equally in each neighbor.In real life,heterogeneous investment is often accompanied by time or economic costs.The discreet investors in this paper pay a certain price to obtain their neighbors'investment behavior and cooperation value,which quantifies the time and economic costs of the heterogeneous investment process.The results of Monte Carlo simulation experiments in this study show that discreet investors can effectively resist the invasion of the defectors,form a stable cooperative group and expand the cooperative advantage in evolution.However,when discreet investors pay too high a price,they lose their strategic advantage.The results in this paper help us understand the role of heterogeneous investment in promoting and maintaining human social cooperation.展开更多
This paper examines the performance of Full-Duplex Cooperative Rate Splitting(FD-CRS)with Simultaneous Wireless Information and Power Transfer(SWIPT)support in Multiple Input Single Output(MISO)networks.In a Rate Spli...This paper examines the performance of Full-Duplex Cooperative Rate Splitting(FD-CRS)with Simultaneous Wireless Information and Power Transfer(SWIPT)support in Multiple Input Single Output(MISO)networks.In a Rate Splitting Multiple Access(RSMA)multicast system with two local users and one remote user,the common data stream contains the needs of all users,and all users can decode the common data stream.Therefore,each user can receive some information that other users need,and local users with better channel conditions can use this information to further enhance the reception reliability and data rate of users with poor channel quality.Even using Cell-Center-Users(CCUs)as a cooperative relay to assist the transmission of common data can improve the average system speed.To maximize the minimum achievable rate,we optimize the beamforming vector of Base Station(BS),the common streamsplitting vector,the cooperative distributed beamvector and the strong user transmission power under the power budget constraints of BS and relay devices and the service quality requirements constraints of users.Since the whole problem is not convex,we cannot solve it directly.Therefore,we propose a low complexity algorithm based on Successive Convex Approximation(SCA)technology to find the optimal solution to the problemunder consideration.The simulation results show that FD C-RSMA has better gain andmore powerful than FD C-NOMA,HD C-RSMA,RSMA and NOMA.展开更多
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc...Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins.展开更多
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been conside...The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess...The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.展开更多
Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoret...Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.展开更多
With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety...With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.展开更多
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th...To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.展开更多
文摘A co-operative contract to set up China’s largest joint-venture power project in Shandong Province, was initiated by.four partners on June 7 at Beijing’s Great Hall of the People. The project’s total investment is expected to be about $2.3 billion, of which a little over $1 billion will be raised overseas. The partners in the massive power projects are Shandong Electric Power Corp, Shandong International Trust and Investment Corp, Electricite de
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金supported by the National Natural Science Foundation of China(31571249 and 31425003)
文摘Summary In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity. However, little attention has been paid to their genetic association. This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants. These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.
基金the Open Foundation of Key Lab-oratory of Software Engineering of Yunnan Province(Grant Nos.2020SE308 and 2020SE309).
文摘In the realm of public goods game,punishment,as a potent tool,stands out for fostering cooperation.While it effectively addresses the first-order free-rider problem,the associated costs can be substantial.Punishers incur expenses in imposing sanctions,while defectors face fines.Unfortunately,these monetary elements seemingly vanish into thin air,representing a loss to the system itself.However,by virtue of the redistribution of fines to cooperators and punishers,not only can we mitigate this loss,but the rewards for these cooperative individuals can be enhanced.Based upon this premise,this paper introduces a fine distribution mechanism to the traditional pool punishment model.Under identical parameter settings,by conducting a comparative experiment with the conventional punishment model,the paper aims to investigate the impact of fine distribution on the evolution of cooperation in spatial public goods game.The experimental results clearly demonstrate that,in instances where the punishment cost is prohibitively high,the cooperative strategies of the traditional pool punishment model may completely collapse.However,the model enriched with fine distribution manages to sustain a considerable number of cooperative strategies,thus highlighting its effectiveness in promoting and preserving cooperation,even in the face of substantial punishment cost.
基金supported in part by the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautical Science Foundation of China (Grant No. 20220001068001)National Natural Science Foundation of China (Grant No.61673327)+1 种基金Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. 2023-JC-QN-0733)China IndustryUniversity-Research Innovation Foundation (Grant No. 2022IT188)。
文摘Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.
基金partially supported by the Science Foundation of China University of Petroleum,Beijing(2462023XKBH013)the National Natural Science Foundation of China(52202405)。
文摘Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the downstream oil supply chain cannot be carried out smoothly.This paper intends to propose a multi-party coordination method to promote cooperation between oil shippers and pipeline operator by optimizing oil transportation,oil substitution and pipeline pricing schemes.An integrated game-theoretic modeling and analysis approach is developed to characterize the operation behaviors of all stakeholders in the downstream oil supply chain.The proposed mixed integer nonlinear programming model constrains supply and demand capacity,transportation routes,oil substitution rules and pipeline freight levels.Logarithm transformation and price discretization are introduced for model linear approximation.Simulation experiments are carried out in the oil distribution system in South China.The results show that compared to the business-as-usual scheme,the new scheme saves transportation cost by 3.48%,increases pipeline turnover by 5.7%,and reduces energy consumption and emissions by 7.66%and 6.77%.It is proved that the proposed method improves the revenue of the whole system,achieves fair revenue distribution,and also improves the energy and environmental benefits of the oil supply chain.
基金Project supported by the Open Foundation of Key Laboratory of Software Engineering of Yunnan Province(Grant Nos.2020SE308 and 2020SE309).
文摘This paper studies the evolutionary process of cooperative behavior in a public goods game model with heterogeneous investment strategies in square lattices.In the proposed model,players are divided into defectors,cooperators and discreet investors.Among these,defectors do not participate in investing,discreet investors make heterogeneous investments based on the investment behavior and cooperation value of their neighbors,and cooperators invest equally in each neighbor.In real life,heterogeneous investment is often accompanied by time or economic costs.The discreet investors in this paper pay a certain price to obtain their neighbors'investment behavior and cooperation value,which quantifies the time and economic costs of the heterogeneous investment process.The results of Monte Carlo simulation experiments in this study show that discreet investors can effectively resist the invasion of the defectors,form a stable cooperative group and expand the cooperative advantage in evolution.However,when discreet investors pay too high a price,they lose their strategic advantage.The results in this paper help us understand the role of heterogeneous investment in promoting and maintaining human social cooperation.
基金This work is supported by Special Fund Project for Technology Innovation of Xuzhou City in 2022(KC22083)Jiangsu Province Key Research and Development(Modern Agriculture)Project(BE2019333)and(BE2019334)+1 种基金Guangzhou Basic Research Program Municipal School(College)Joint Funding Project underGrant 2023A03J0111Innovation Project of Jiangsu Province(SJCK21_1133).
文摘This paper examines the performance of Full-Duplex Cooperative Rate Splitting(FD-CRS)with Simultaneous Wireless Information and Power Transfer(SWIPT)support in Multiple Input Single Output(MISO)networks.In a Rate Splitting Multiple Access(RSMA)multicast system with two local users and one remote user,the common data stream contains the needs of all users,and all users can decode the common data stream.Therefore,each user can receive some information that other users need,and local users with better channel conditions can use this information to further enhance the reception reliability and data rate of users with poor channel quality.Even using Cell-Center-Users(CCUs)as a cooperative relay to assist the transmission of common data can improve the average system speed.To maximize the minimum achievable rate,we optimize the beamforming vector of Base Station(BS),the common streamsplitting vector,the cooperative distributed beamvector and the strong user transmission power under the power budget constraints of BS and relay devices and the service quality requirements constraints of users.Since the whole problem is not convex,we cannot solve it directly.Therefore,we propose a low complexity algorithm based on Successive Convex Approximation(SCA)technology to find the optimal solution to the problemunder consideration.The simulation results show that FD C-RSMA has better gain andmore powerful than FD C-NOMA,HD C-RSMA,RSMA and NOMA.
基金funded by JSPS KAKENHI Grant Numbers JP26290015 and JP21H02655(to TK)from Ministry of Education,Culture,Sports,Science,and Technology of Japan(MEXT)。
文摘Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins.
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
基金supported by Natural Science Foundation of China(Grant 61901070,61801065,62271096,61871062,U20A20157 and 62061007)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant KJQN202000603 and KJQN201900611)+3 种基金in part by the Natural Science Foundation of Chongqing(Grant CSTB2022NSCQMSX0468,cstc2020jcyjzdxmX0024 and cstc2021jcyjmsxmX0892)in part by University Innovation Research Group of Chongqing(Grant CxQT20017)in part by Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)in part by the Chongqing Graduate Student Scientific Research Innovation Project(CYB22246)。
文摘The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
基金supported in part by the National Natural Science Foundation of China under Grant 61901128,62273109the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB510032).
文摘The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.
文摘Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.
基金supported by the Funds for the Central Universities。
文摘To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.