A joint optimal sensing-transmission time duration and power allocation scheme has been proposed to maximize the energy efficiency for cooperative relay network. In particular, observing that the spectrum sensing and ...A joint optimal sensing-transmission time duration and power allocation scheme has been proposed to maximize the energy efficiency for cooperative relay network. In particular, observing that the spectrum sensing and data transmission time duration lies within a strict interval, the joint optimal solutions of our proposed scheme are achieved by sequential optimization method. Numerical evaluation results reveal that the relay-assisted transmission using our proposed scheme significantly outperforms the non-relay transmission in terms of the network energy-efficiency.展开更多
The Wireless Mesh Network (WMN) has become a focus in research of wireless broadband communications . In a switching technologies - based wireless Mesh network, the entire network is regarded as an IP subnet, so it ca...The Wireless Mesh Network (WMN) has become a focus in research of wireless broadband communications . In a switching technologies - based wireless Mesh network, the entire network is regarded as an IP subnet, so it cannot be applied in situations where large coverage is required . The use of cooperative relaying technologies can improve the transmission rate and reliability of wireless link; while the wireless Mesh network, once integrated with cooperative relaying technologies and routing technologies , can improve its spectrum efficiency and cover a wide area . However, there are many problems to be solved with respect to standardization, key technologies research and industrialization. Therefore , the application of cooperative relaying technologies in wireless Mesh networks is still a great challenge .展开更多
Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports...Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.展开更多
This paper proposes a distributed relay and modulation and coding scheme (MCS) selection in wireless cooperative relaying networks where the adaptive modulation and coding (AMC) scheme is applied. First-order fini...This paper proposes a distributed relay and modulation and coding scheme (MCS) selection in wireless cooperative relaying networks where the adaptive modulation and coding (AMC) scheme is applied. First-order finite-state Markov channels (FSMCs) are used to model the wireless channels and make prediction. The objective of the relay policy is to select one relay and MCS among different alternatives in each time-slot according to their channel state information (CSI) with the goal of maximizing the throughput of the whole transmission period. The procedure of relay and MCS selection can be formulated as a discounted Markov decision chain, and the relay policy can be obtained with recent advances in stochastic control algorithms. Simulation results are presented to show the effectiveness of the proposed scheme.展开更多
基金supported by the Key Research of China Southern Power Grid Company(K201029.3)
文摘A joint optimal sensing-transmission time duration and power allocation scheme has been proposed to maximize the energy efficiency for cooperative relay network. In particular, observing that the spectrum sensing and data transmission time duration lies within a strict interval, the joint optimal solutions of our proposed scheme are achieved by sequential optimization method. Numerical evaluation results reveal that the relay-assisted transmission using our proposed scheme significantly outperforms the non-relay transmission in terms of the network energy-efficiency.
文摘The Wireless Mesh Network (WMN) has become a focus in research of wireless broadband communications . In a switching technologies - based wireless Mesh network, the entire network is regarded as an IP subnet, so it cannot be applied in situations where large coverage is required . The use of cooperative relaying technologies can improve the transmission rate and reliability of wireless link; while the wireless Mesh network, once integrated with cooperative relaying technologies and routing technologies , can improve its spectrum efficiency and cover a wide area . However, there are many problems to be solved with respect to standardization, key technologies research and industrialization. Therefore , the application of cooperative relaying technologies in wireless Mesh networks is still a great challenge .
基金The article has been supported by the College of Engineering and Technology,American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.
文摘This paper proposes a distributed relay and modulation and coding scheme (MCS) selection in wireless cooperative relaying networks where the adaptive modulation and coding (AMC) scheme is applied. First-order finite-state Markov channels (FSMCs) are used to model the wireless channels and make prediction. The objective of the relay policy is to select one relay and MCS among different alternatives in each time-slot according to their channel state information (CSI) with the goal of maximizing the throughput of the whole transmission period. The procedure of relay and MCS selection can be formulated as a discounted Markov decision chain, and the relay policy can be obtained with recent advances in stochastic control algorithms. Simulation results are presented to show the effectiveness of the proposed scheme.