Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation...Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation(5G) network have toadopt new techniques to substantially increase spectral effi-ciency and reliability. At the base station side, available re-sources(power supply, equipment size, processing capability,etc.) are far more sufficient than that of the terminal side,which imposes a high challenge on the uplink transmission.The concept of cooperative communications opens a possibili-ty of using multiple terminals to cooperatively achieve spa-tial diversity that is typically obtained by means of multipleantennas in the base station. The application of Device-to-Device(D2D) communications in the 3GPP LTE system fur-ther pushes the collaboration of terminals from the theory tothe practice. The utilization of D2D-based cooperative relay-ing is promising in the era of 5G. In this paper, we compara-tively study several cooperative multi-relay schemes, includ-ing the proposed opportunistic space-time coding, in thepresence of imperfect channel state information. The numeri-cal results reveal that the proposed scheme is the best coop-erative solution until now from the perspective of multiplex-ing-diversity tradeoff.展开更多
With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety...With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.展开更多
Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to...Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm.展开更多
In future communications, cooperative communications with relay networks will be one of the most effective schemes to enlarge the coverage area and to boost the data rate. In the recent research results, the path sele...In future communications, cooperative communications with relay networks will be one of the most effective schemes to enlarge the coverage area and to boost the data rate. In the recent research results, the path selection, power allocation, and relay protocols on relay networks are the most important factors to improve the system performance. However, the channel quality of the direct transmission path and the relaying path has an influential effect on the performance of relay networks. Therefore, in this paper, we propose a best relaying path selection(BRPS) scheme to obtain the path diversity to improve the system capacity and data rate for cooperative networks(CNs). Simulation results show that the more the relay nodes are selected, the lower the bit error rate(BER) is. The proposed BRPS scheme obtains a high concession between both BER and system capacity for CNs.展开更多
In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall effi...In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall efficiency of the network,it requires incentive to stimulate potential relay nodes to assist the source by forwarding its data to the destination.Moreover,the potential relays are better informed than the source about their channel conditions to destination,which results in asymmetric information between the source and the relays.In this paper,we study the problem of lack of forwarding incentive in cooperative communication when channel state information of relays is private information and not known by the source.To tackle this problem,we apply the principle of contract theory to a cooperative wireless system.Source first designs incentive compatible and individually rational contract,consisting of a set of power-credit pairs.Then it broadcasts contract items to nearby nodes.Once the source node receives reply messages from the volunteer relays,it chooses one or more relays based on its requirements and communication starts.Simulation results show how credit assignment works in order to stimulate relays to cooperate and prevents relays from cheating behavior.展开更多
In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this pap...In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this paper, we analyze several simple network topologies. Under the condition of equal power allocating, the optimum relay location of each network topology are respectively made sure by using symbol error rate (SER) formula. And these types of topologies are compared, the analysis results show that, linear network topology has the best system performance, the system performance of isosceles triangle topology is better than that of equilateral triangle topology.展开更多
In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measu...In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measure the performance of the cooperative system at the destination exactly with low computation costs.This paper derives a closed-form expression of the end-to-end bit error rate firstly. Then, an approximate BER expression based on the relationship between the instantaneous signal-to-noise ratio(SNR) of the relay-to-destination link and the probability of error propagation is derived. Finally, a simplified relay selection formula is proposed. Simulation results prove that the proposed relay selection rule can reflect the BER of each relay properly as well.展开更多
With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in ...With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.展开更多
While the Network Coding cooperative relaying (NC-relaying) has the merit of high spectral efficiency,Superposition Coding relaying (SC-relaying) has the merit of high throughput. In this paper,a novel concept,coded c...While the Network Coding cooperative relaying (NC-relaying) has the merit of high spectral efficiency,Superposition Coding relaying (SC-relaying) has the merit of high throughput. In this paper,a novel concept,coded cooperative relaying,is presented,which is a unified scheme of the NC-relaying and SC-relaying. For the SC-relaying strategy which can be considered one-way coded relaying scheme with multi-access channel,the close-form solution of the outage probabilities of the basic signal and additional signal are obtained firstly. Secondly,the Diversity-and-Multiplexing Tradeoff (DMT) characteristics of basic signal and additional signal are investigated entirely as well as the optimal close-form solutions. The compared numerical analysis shows the evaluation error of throughput based on the close-form solution is about 0.15 nats,which is within the acceptable error range. Due to the mutual effect between the both source signals,the available maximal values of the two multiplexing gains are less than 1.展开更多
Nowadays, hybrid satellite-terrestrial cooperative network has emerged as a key technology to provide a great variety of communication services. The deployment of this network will improve coverage and capacity in rem...Nowadays, hybrid satellite-terrestrial cooperative network has emerged as a key technology to provide a great variety of communication services. The deployment of this network will improve coverage and capacity in remote areas. Despite the benefits of this network, by increasing the number of users, communication efficiency based on interference management is a major challenge in satellite-based system. Also, the direct links between satellite system and the terrestrial equipment do not always have desirable channel condition. In order to avoid serious throughput degradation, choosing a cooperative relay node is very important. In this paper, Stackelberg game is exploited for interference management that is raised by satellites in down link over terrestrial equipment. Then, for interference management between ground station and relay node with other mobile users, CVX is used to allocate optimum power. Also, the best relay node in this structure is selected based on the harmonic mean function. Thus, the performance of the heterogeneous satellite-cooperative network is investigated based on three benchmarks, namely, successful transmission, energy consumption and outage probability. Finally, the simulation results showed the effect of proposed system model on the performance of next generation satellite networks.展开更多
An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation functi...An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.展开更多
To exploit the effect of modulation schemes on the best relay selection,a novel Jointing Modulation schemes max-min criterion(JM-max-min) is proposed firstly for Two-Way De-Noise-and-Forward(DNF) Opportunistic Relayin...To exploit the effect of modulation schemes on the best relay selection,a novel Jointing Modulation schemes max-min criterion(JM-max-min) is proposed firstly for Two-Way De-Noise-and-Forward(DNF) Opportunistic Relaying systems(TW-DNF-OR) by aiming at minimizing the Pairwise Error Probability(PEP) of Multi-Access(MA) phase which dominates the error per-formance of TW-DNF-OR due to the presence of MA interference.The proposed JM-max-min criterion integrates perfectly the minimum distances of constellations and the relay links gains.Then,with the proposed JM-max-min criterion,we analyze the Symbol Error Probabilities(SEPs) of MA phase and BroadCast(BC) phase by using the approximated mathematics analysis,and present the corresponding closed-form expressions to SEPs.The numerical analysis shows,for a given modulations combination at both sources,the TW-DNF-OR systems with the proposed JM-max-min criterion outperform the one with the conventional max-min criterion.展开更多
For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both ...For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both large-scale path loss and small-scale Rayleigh fading are taken into account.Aclosed form expression to allocate power in optimal proportion at source is obtained.Simulation resultsshow that the proposed scheme to distribute power can minimize BER under any channel conditions.展开更多
Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on...Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on maximal ratio combining (MRC) method for single- and multi-relay are investigated. In this study, the bit-error-rate (BER) expression for collocated and uniform linear antenna in cooperative communication system over flat Rayleigh fading channel is derived. The result for 3-element collocated antennas (tripole) shows improvement in performance over dual-polarized antennas. Also increasing number of tripole antenna does not add improvement.展开更多
A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the...A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.展开更多
The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I...The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I(ARQ-I)and repetition redundancy(ARQ-RR)are considered and expressions for the optimal power allocation(PA)are obtained.Using the obtained optimal powers,the EE-throughput tradeoff(EETT)is analyzed and the EETT closed-form expressions for both ARQ protocols and in arbitrary average channel gain values are obtained.It is shown that how different throughput requirements,especially the high levels,affect the EE performance.Additionally,asymptotic analysis is made in the feasible high throughput values and lower and upper EETT bounds are derived for ARQ-I protocol.To evaluate the EE a distributed PA scenario,as a benchmark,is presented and the energy savinggain obtained from the optimal PA in comparison with the distributed PA for ARQ-I and ARQ-RR protocols is discussed in different throughput values and node locations.展开更多
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
文摘Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation(5G) network have toadopt new techniques to substantially increase spectral effi-ciency and reliability. At the base station side, available re-sources(power supply, equipment size, processing capability,etc.) are far more sufficient than that of the terminal side,which imposes a high challenge on the uplink transmission.The concept of cooperative communications opens a possibili-ty of using multiple terminals to cooperatively achieve spa-tial diversity that is typically obtained by means of multipleantennas in the base station. The application of Device-to-Device(D2D) communications in the 3GPP LTE system fur-ther pushes the collaboration of terminals from the theory tothe practice. The utilization of D2D-based cooperative relay-ing is promising in the era of 5G. In this paper, we compara-tively study several cooperative multi-relay schemes, includ-ing the proposed opportunistic space-time coding, in thepresence of imperfect channel state information. The numeri-cal results reveal that the proposed scheme is the best coop-erative solution until now from the perspective of multiplex-ing-diversity tradeoff.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.
文摘Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm.
基金supported by MOST under Grant No.105-2221-E-324-019。
文摘In future communications, cooperative communications with relay networks will be one of the most effective schemes to enlarge the coverage area and to boost the data rate. In the recent research results, the path selection, power allocation, and relay protocols on relay networks are the most important factors to improve the system performance. However, the channel quality of the direct transmission path and the relaying path has an influential effect on the performance of relay networks. Therefore, in this paper, we propose a best relaying path selection(BRPS) scheme to obtain the path diversity to improve the system capacity and data rate for cooperative networks(CNs). Simulation results show that the more the relay nodes are selected, the lower the bit error rate(BER) is. The proposed BRPS scheme obtains a high concession between both BER and system capacity for CNs.
文摘In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall efficiency of the network,it requires incentive to stimulate potential relay nodes to assist the source by forwarding its data to the destination.Moreover,the potential relays are better informed than the source about their channel conditions to destination,which results in asymmetric information between the source and the relays.In this paper,we study the problem of lack of forwarding incentive in cooperative communication when channel state information of relays is private information and not known by the source.To tackle this problem,we apply the principle of contract theory to a cooperative wireless system.Source first designs incentive compatible and individually rational contract,consisting of a set of power-credit pairs.Then it broadcasts contract items to nearby nodes.Once the source node receives reply messages from the volunteer relays,it chooses one or more relays based on its requirements and communication starts.Simulation results show how credit assignment works in order to stimulate relays to cooperate and prevents relays from cheating behavior.
文摘In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this paper, we analyze several simple network topologies. Under the condition of equal power allocating, the optimum relay location of each network topology are respectively made sure by using symbol error rate (SER) formula. And these types of topologies are compared, the analysis results show that, linear network topology has the best system performance, the system performance of isosceles triangle topology is better than that of equilateral triangle topology.
基金supported by the Pre-Research Foundation of China。
文摘In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measure the performance of the cooperative system at the destination exactly with low computation costs.This paper derives a closed-form expression of the end-to-end bit error rate firstly. Then, an approximate BER expression based on the relationship between the instantaneous signal-to-noise ratio(SNR) of the relay-to-destination link and the probability of error propagation is derived. Finally, a simplified relay selection formula is proposed. Simulation results prove that the proposed relay selection rule can reflect the BER of each relay properly as well.
文摘With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.
基金Supported by the 973 Project of China (No.2007CB 310607)the 863 Key Project of "Key Technologies and System for Trunk Communication Based on TD-SCDMA" of China (No.2009AA011302)the Open Research Fund of National Mobile Communications Research Lab,Southeast University (N200604)
文摘While the Network Coding cooperative relaying (NC-relaying) has the merit of high spectral efficiency,Superposition Coding relaying (SC-relaying) has the merit of high throughput. In this paper,a novel concept,coded cooperative relaying,is presented,which is a unified scheme of the NC-relaying and SC-relaying. For the SC-relaying strategy which can be considered one-way coded relaying scheme with multi-access channel,the close-form solution of the outage probabilities of the basic signal and additional signal are obtained firstly. Secondly,the Diversity-and-Multiplexing Tradeoff (DMT) characteristics of basic signal and additional signal are investigated entirely as well as the optimal close-form solutions. The compared numerical analysis shows the evaluation error of throughput based on the close-form solution is about 0.15 nats,which is within the acceptable error range. Due to the mutual effect between the both source signals,the available maximal values of the two multiplexing gains are less than 1.
文摘Nowadays, hybrid satellite-terrestrial cooperative network has emerged as a key technology to provide a great variety of communication services. The deployment of this network will improve coverage and capacity in remote areas. Despite the benefits of this network, by increasing the number of users, communication efficiency based on interference management is a major challenge in satellite-based system. Also, the direct links between satellite system and the terrestrial equipment do not always have desirable channel condition. In order to avoid serious throughput degradation, choosing a cooperative relay node is very important. In this paper, Stackelberg game is exploited for interference management that is raised by satellites in down link over terrestrial equipment. Then, for interference management between ground station and relay node with other mobile users, CVX is used to allocate optimum power. Also, the best relay node in this structure is selected based on the harmonic mean function. Thus, the performance of the heterogeneous satellite-cooperative network is investigated based on three benchmarks, namely, successful transmission, energy consumption and outage probability. Finally, the simulation results showed the effect of proposed system model on the performance of next generation satellite networks.
基金supported by Important National Science & Technology Specific Projects under Grant No.CX01011the Important National Science & Technology Specific Projects under Grant No.4101002+2 种基金the National Natural Science Foundation of China under Grants No.61002014,No.60972017,No.60972018the Excellent Young Teachers Program of MOE,PRC under Grant No.2009110120028the Research Fund for the Doctoral Program of Higher Education under Grants No.20091101110019,No.20070007019
文摘An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.
基金Supported by the National Natural Science Foundations of China (No. 61071090,No. 61171093)the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CX10B-184Z,CXZZ11_0388)the Project 11KJA510001 and PAPD
文摘To exploit the effect of modulation schemes on the best relay selection,a novel Jointing Modulation schemes max-min criterion(JM-max-min) is proposed firstly for Two-Way De-Noise-and-Forward(DNF) Opportunistic Relaying systems(TW-DNF-OR) by aiming at minimizing the Pairwise Error Probability(PEP) of Multi-Access(MA) phase which dominates the error per-formance of TW-DNF-OR due to the presence of MA interference.The proposed JM-max-min criterion integrates perfectly the minimum distances of constellations and the relay links gains.Then,with the proposed JM-max-min criterion,we analyze the Symbol Error Probabilities(SEPs) of MA phase and BroadCast(BC) phase by using the approximated mathematics analysis,and present the corresponding closed-form expressions to SEPs.The numerical analysis shows,for a given modulations combination at both sources,the TW-DNF-OR systems with the proposed JM-max-min criterion outperform the one with the conventional max-min criterion.
基金Supported by the National High Technology Research and Development Progranmme of China (No. 2009AA01Z246,2009AA01Z211 )
文摘For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both large-scale path loss and small-scale Rayleigh fading are taken into account.Aclosed form expression to allocate power in optimal proportion at source is obtained.Simulation resultsshow that the proposed scheme to distribute power can minimize BER under any channel conditions.
文摘Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on maximal ratio combining (MRC) method for single- and multi-relay are investigated. In this study, the bit-error-rate (BER) expression for collocated and uniform linear antenna in cooperative communication system over flat Rayleigh fading channel is derived. The result for 3-element collocated antennas (tripole) shows improvement in performance over dual-polarized antennas. Also increasing number of tripole antenna does not add improvement.
文摘A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.
文摘The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I(ARQ-I)and repetition redundancy(ARQ-RR)are considered and expressions for the optimal power allocation(PA)are obtained.Using the obtained optimal powers,the EE-throughput tradeoff(EETT)is analyzed and the EETT closed-form expressions for both ARQ protocols and in arbitrary average channel gain values are obtained.It is shown that how different throughput requirements,especially the high levels,affect the EE performance.Additionally,asymptotic analysis is made in the feasible high throughput values and lower and upper EETT bounds are derived for ARQ-I protocol.To evaluate the EE a distributed PA scenario,as a benchmark,is presented and the energy savinggain obtained from the optimal PA in comparison with the distributed PA for ARQ-I and ARQ-RR protocols is discussed in different throughput values and node locations.