The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,one of the emerging fields is to utilize multi-UAV as a team under autonomous control in a complex environment.Among the challenges in fully achievi...With the rapid development of Unmanned Aerial Vehicle(UAV)technology,one of the emerging fields is to utilize multi-UAV as a team under autonomous control in a complex environment.Among the challenges in fully achieving autonomous control,Cooperative task assignment stands out as the key function.In this paper,we analyze the importance and difficulties of multiUAV cooperative task assignment in characterizing scenarios and obtaining high-quality solutions.Furthermore,we present three promising directions for future research:Cooperative task assignment in a dynamic complex environment,in an unmanned-manned aircraft system and in a UAV swarm.Our goal is to provide a brief review of multi-UAV cooperative task assignment for readers to further explore.展开更多
How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined...How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined to illustrate how successful and effective interaction is carried out to create the optimal conditions for second language acquisition.展开更多
A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperati...A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency.展开更多
This review paper focuses on cooperative robotic arms with mobile or drone bases performing cooperative tasks. This is because cooperative robots are often used as risk-reduction tools to human life. For example, they...This review paper focuses on cooperative robotic arms with mobile or drone bases performing cooperative tasks. This is because cooperative robots are often used as risk-reduction tools to human life. For example, they are used to explore dangerous places such as minefields and disarm explosives. Drones can be used to perform tasks such as aerial photography, military and defense missions,agricultural surveys, etc. The bases of the cooperative robotic arms can be stationary, mobile(ground), or drones. Cooperative manipulators allow faster performance of assigned tasks because of the available "extra hand". Furthermore, a mobile base increases the reachable ground workspace of cooperative manipulators while a drone base drastically increases this workspace to include the aerial space.The papers in this review are chosen to extensively cover a wide variety of cooperative manipulation tasks and industries that use them.In cooperative manipulation, avoiding self-collision is one of the most important tasks to be performed. In addition, path planning and formation control can be challenging because of the increased number of components to be coordinated.展开更多
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
基金supported in part by the National Natural Science Foundation of China(Nos.61671031,61722102,91738301)。
文摘With the rapid development of Unmanned Aerial Vehicle(UAV)technology,one of the emerging fields is to utilize multi-UAV as a team under autonomous control in a complex environment.Among the challenges in fully achieving autonomous control,Cooperative task assignment stands out as the key function.In this paper,we analyze the importance and difficulties of multiUAV cooperative task assignment in characterizing scenarios and obtaining high-quality solutions.Furthermore,we present three promising directions for future research:Cooperative task assignment in a dynamic complex environment,in an unmanned-manned aircraft system and in a UAV swarm.Our goal is to provide a brief review of multi-UAV cooperative task assignment for readers to further explore.
文摘How to promote interaction in cooperative learning tasks is discussed from a theoretical perspective in order to maximize the benefits of cooperative learning. A classroom instructional model is presented and examined to illustrate how successful and effective interaction is carried out to create the optimal conditions for second language acquisition.
基金the National Science and Technology Support Program(No.2015BAG20B05)
文摘A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency.
基金by Botswana International University of Science and Technology(BIUST)Drones Project(No.P00015).
文摘This review paper focuses on cooperative robotic arms with mobile or drone bases performing cooperative tasks. This is because cooperative robots are often used as risk-reduction tools to human life. For example, they are used to explore dangerous places such as minefields and disarm explosives. Drones can be used to perform tasks such as aerial photography, military and defense missions,agricultural surveys, etc. The bases of the cooperative robotic arms can be stationary, mobile(ground), or drones. Cooperative manipulators allow faster performance of assigned tasks because of the available "extra hand". Furthermore, a mobile base increases the reachable ground workspace of cooperative manipulators while a drone base drastically increases this workspace to include the aerial space.The papers in this review are chosen to extensively cover a wide variety of cooperative manipulation tasks and industries that use them.In cooperative manipulation, avoiding self-collision is one of the most important tasks to be performed. In addition, path planning and formation control can be challenging because of the increased number of components to be coordinated.