期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Surface modification of an up-conversion luminescence material by overcoating with SiO_2 and its characterization 被引量:2
1
作者 CUI Lili LIU Jiemin +3 位作者 FAN Huili XU Xiaowei YANG Min XIAO Junping 《Rare Metals》 SCIE EI CAS CSCD 2007年第3期276-279,共4页
The surface of an up-conversion luminescence material was modified by overcoating with SiOa, which was synthesized from a hydrolysis progress of telraethoxysilane (TEOS) in alkalescent condition. By analyzing the hy... The surface of an up-conversion luminescence material was modified by overcoating with SiOa, which was synthesized from a hydrolysis progress of telraethoxysilane (TEOS) in alkalescent condition. By analyzing the hydrolyzed mechanism of TEOS, it was found that there was not only physical adsorption but also chemical bonding between the up-conversion material and SiO2. At the same time, some adsorption bands at 1100, 475, 950, and 3500 cm^-1 were found by FI-IR, which were the characteristic bands of Si-OH and Si-O-Si. By analyzing the surface elements of the coated material by XPS, it was found that its surface only included Si, O, and C elements, and not F and Y. In the picture of XRD, there was no additional peak after surface modification, suggesting that the silica shell was amorphous. The small peak at 20 = 23° in the X-ray diffraction pattern of the coated material was caused by the amorphous SiO2 shell, and the TEM image also proved that the surface of the material was successfully modified by overcoating with SiO2. The amount of hydroxyls was then increased on the surface of the material, which made it easy to connect with other active groups. 展开更多
关键词 surface modification SIO2 SOL-GEL up-conversation luminescence
下载PDF
Up-conversion luminescence from Nd^(3+) ions doped in NaBi(WO_4)_2 single crystal 被引量:2
2
作者 魏东磊 黄彦林 +2 位作者 施亮 乔学斌 徐孝镇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期905-910,共6页
The luminescence of Nd3+-doped in NaBi(WO4)2 single crystal was investigated from 10 K to room temperature.The excitation source was a pulsed dye laser in resonance into the(4G5/2+2G(1)7/2) levels of Nd3+ ions.Several... The luminescence of Nd3+-doped in NaBi(WO4)2 single crystal was investigated from 10 K to room temperature.The excitation source was a pulsed dye laser in resonance into the(4G5/2+2G(1)7/2) levels of Nd3+ ions.Several blue emission bands in the up-conversion luminescence spectra corresponded to transitions from 2P1/2 to 4I9/2.Some violet bands corresponding to transitions of 4D3/2→(4I9/2,4I11/2,4I13/2) were also observed.For comparison,the luminescence spectra and decay curves excited by the pulsed 355 nm l... 展开更多
关键词 optical materials NaBi(WO4)2 NEODYMIUM up-conversion luminescence rare earths
下载PDF
Up-conversion luminescence tuning in Er^3+ -doped ceramic glass by femtosecond laser pulse at different laser powers 被引量:1
3
作者 Wen-Jing Cheng Guo Liang +4 位作者 Ping Wu Shi-Hua Zhao Tian-Qing Jia Zhen-Rong Sun Sift-An Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期224-230,共7页
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conve... The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications. 展开更多
关键词 rare-earth ions up-conversion luminescence pulse shaping two-photon absorption
下载PDF
Sensitized Up-Conversion Luminescence of Ho^(3+) in Nd^(3+)-Yb^(3+)-Ho^(3+) Co-doped ZrF_4-Based Glass 被引量:1
4
作者 董亚明 李光远 《Journal of Shanghai University(English Edition)》 CAS 2002年第1期45-49,共5页
Up-conversion processes for the blue, green and red emissions were foundtwo-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd^(3+)→ Yb^(3+) → Ho^(3+) energy transfer. The str... Up-conversion processes for the blue, green and red emissions were foundtwo-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd^(3+)→ Yb^(3+) → Ho^(3+) energy transfer. The strong green emission due to the Ho^(3+) : (~5F_4, ~5S_2)→ ~5I_8 transitions was observed in Nd^(3+) - Ho^(3+) co-doped ZrF_4-based fluoride glasses under800 nm excitation. As an attempt to enhance Ho^(3+) up-conversion luminescences in the Nd^(3+) -Ho^(3+) co-doped ZrF_4-based glasses, Yb^(3+) ions were added to the glasses. As a result it wasfound that, in 800 nm excitation of 60ZrF_4. 30BaF2. (8-x)LaF_3. 1NdF_3. xYbF_3. 1HoF_3 glasses (x =0 to 7), sensitized up-conversion luminescences are observed at around 490 nm (blue), 545 nm(green), and 650 nm (red), which correspond to the Ho^(3+) : ~5F_3 → ~5I_8, ( ~5F_4, ~5S_2) →~5I_8 and ~5F_5 → ~5I_8 transitions respectively. The intensities of the green and red emissions ina 3 mol% YbF_3-containing glass were about 50 times stronger than those glasses without YbF_3. Thisis based on sensitization due to Yb^(3+) ions. In particular, the green emission was extremelystrong and the Nd^(3+) - Yb^(3+) - Ho^(3+) co-doped ZrF_4-based glasses have a high possibility ofrealizing a green up-conversion laser glass. In this paper the up-conversion mechanism in theglasses is discussed in detail. 展开更多
关键词 heavy metal fluoride glass luminescence up-conversion
下载PDF
Up-conversion luminescence properties and energy transfer of Er^(3+)/Yb^(3+)co-doped oxyfluoride glass ceramic containing CaF_2 nano-crystals 被引量:1
5
作者 马辰硕 焦清 +4 位作者 李龙基 周大成 杨正文 宋志国 邱建备 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期574-578,共5页
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-... The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed. 展开更多
关键词 NANO-CRYSTALS up-conversion luminescence Er^3+/Yb^3+ co-doped glass ceramics
下载PDF
Frequency Up-conversion Luminescence Properties and Mechanism of Tm^(3+) /Er^(3+)/Yb^(3+) Co-doped Oxyfluorogermanate Glasses 被引量:1
6
作者 胡曰博 周大利 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期393-397,共5页
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue... Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed. 展开更多
关键词 frequency up-conversion luminescence oxyfluorogermanate glasses Tm3+/Er3+/Yb3+co- doped optical properties energy transfer
下载PDF
Comparison study of two aldehyde group finishing agents in surface modification of up-conversion luminescence materials
7
作者 CUI Lili FAN Huili +1 位作者 XIAO Junping XU Xiaowei 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期127-130,共4页
Surface modification of up-conversion luminescence materials (Na[Y0.57Yb0.39Er0.04]F4 modified by amino groups) by grafting and modifying with aldehyde groups was studied by means of Fourier transform infrared spect... Surface modification of up-conversion luminescence materials (Na[Y0.57Yb0.39Er0.04]F4 modified by amino groups) by grafting and modifying with aldehyde groups was studied by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and emission spectrum (EM). The surface modification effect was compared using two different finishhag agents, p-phthalaldehyde and glutaraldehyde. It was found that the surface of up-conversion luminescence materials could be modified by aldehyde groups of the two finishing agents, the systematic dispersibility and the thermostability of the up-conversion luminescence material modified by p-phthalaldehyde were better than those of the material modified by glutaraldehyde, and the luminous intensity of the material modified by p-phthalaldehyde was increased. The AI (the ratio of the suspended segmental quality in the specimen to the total mass of the specimen) of the material modified by p-phthalaldehyde was higher than that of the material modified by glutaraldehyde. It is obviously seen that the embellishment effect of p-phthalaldehyde as a finishing agent was better than that of glutaraldehyde. In addition, the reasons why p-phthalaldehyde is a good finishing agent are also explained. 展开更多
关键词 luminescence materials up-conversion surface modification luminescence aldehyde groups
下载PDF
Up-conversion luminescence polarization control in Er^(3+)-doped NaYF_4 nanocrystals
8
作者 张晖 姚云华 +2 位作者 张诗按 卢晨晖 孙真荣 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期123-128,共6页
We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence c... We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field. 展开更多
关键词 up-conversion luminescence laser polarization nanocrystal
下载PDF
Green up-conversion Luminescence in Nd^(3+)-Ho^(3+) Co-doped Oxyfluorotellurite Glasses
9
作者 邱建备 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第B12期809-812,共4页
Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxy... Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxyfiuorotellurite glasses under 800 nm excitation. Among these up-conversion luminescence, the green emission was extremely strong and the blue and red emission intensities were very weak. Selectively strong green up-conversion luminescence of these glasses indicate a high possibility for realizing a green upconversion laser. Up-conversion processes for the blue, green and red emissions are two-photon processes assisted by Nd3^+→Ho^3+ energy transfer. It is proposed that the up-conversion mechanism for the blue and green emissions is different from that for the red emission. The respective mechanisms are discussed. 展开更多
关键词 up-conversion luminescence oxyfiuorotellurite glass blue and greene emission
下载PDF
Synthesis and Characterization of IR Up-Conversion Material SrS∶Eu, Sm 被引量:1
10
作者 卢利平 张希艳 +3 位作者 柏朝晖 王晓春 米晓云 刘全生 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期44-47,共4页
Europium and samarium co-doped strontium sulfide (SrS∶Eu, Sm) infrared up-conversion phosphor was synthesized through calcining the precursor, which prepared by wet-method with strontium carbonate (SrCO_3), sulphur (... Europium and samarium co-doped strontium sulfide (SrS∶Eu, Sm) infrared up-conversion phosphor was synthesized through calcining the precursor, which prepared by wet-method with strontium carbonate (SrCO_3), sulphur (S), europium oxide (Eu_2O_3) and samarium oxide (Sm_2O_3) as the starting materials, lithium fluoride (LiF) as the fluxing agent, at 750~1200 ℃ in carbon-reducing atmosphere. XRD analysis shows that SrS crystal structure is formed at 750 ℃, most completely at 1100 ℃. The IR up-conversion luminescence properties were characterized by excitation, emission, up-conversion excitation, up-conversion emission and thermoluminescence spectra. The spectral analysis associated with the physical model of up-conversion luminescence shows that the IR up-conversion luminescence is resulted from electron trapping process of Sm 3+ energy level. The thermoluminescence peak does not appear below 500 ℃ indicating the trapping energy level is appropriately deep, 800~1400 nm near infrared light can be the release light to realize up-conversion luminescence. 展开更多
关键词 SrS∶ Eu Sm PHOSPHOR IR up-conversion luminescence wet-method rare earths
下载PDF
Structural and Luminescence Properties of Transparent Nanocrystalline ZrO2:Er^3+ Films
11
作者 张勤远 杨钢锋 +1 位作者 姜中宏 W.X.Que 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第4期852-855,共4页
The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense ro... The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense roomtemperature emission at 1527nm with a full width at half-maximum of 46 nm has been observed, which is assigned to the ^4Ⅰ13/2 → ^4Ⅰ15/2 intra-4f^n electric transition of Er^3+. Correlations between the luminescence properties and structures of the nanocrystalline ZrO2 :Er^3+ films have been investigated. Infrared-to-visible upconversion occurs simultaneously upon excitation of a commercially available 980-nm laser diode and the involved mechanisms have also been explained. The results indicate that the nanocrystalline ZrO2:Er^3+ films might be suggested as promising materials for achieving broadband Er^3+-doped waveguide amplifiers and upconversion waveguide lasers. 展开更多
关键词 up-conversion luminescence PLANAR WAVE-GUIDES TEMPERATURE FLUORESCENCE FABRICATION
下载PDF
Oxy-Fluoride Borate Infrared Up-Conversion Glass Ceramics
12
作者 杨魁胜 梁海莲 +1 位作者 程光 孟健 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第S1期110-112,共3页
The processing parameters and infrared up-conversion properties of fluoroborate glass ceramics in composition of BaB_2O_4+AlF_3+BaF_2+PbF_2∶YbF_3+HoF_3 were reported. The emission spectrum was measured by Hitachi F-4... The processing parameters and infrared up-conversion properties of fluoroborate glass ceramics in composition of BaB_2O_4+AlF_3+BaF_2+PbF_2∶YbF_3+HoF_3 were reported. The emission spectrum was measured by Hitachi F-4500 spectrometer. The results show that three emission peaks located at 470,545 and 655 nm respectively are observed,(among) which the peak at 545 nm is the strongest. Photon absorption theory and energy transmission theory are used to explain the emission spectrum. 展开更多
关键词 up-conversion luminescence glass ceramics Yb (3+)/Ho (3+) rare earths
下载PDF
Nano-effect enhanced cooperative luminescence of Yb^(3+) clusters in bulk materials
13
作者 Daguang Li Jiahao Cui +3 位作者 Yanhui Dong Hao Cui Dan Zhao Weiping Qin 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期473-478,I0002,共7页
In order to improve the multi-ion cooperative transition, we proposed and exploited a novel nanoscale effect, namely the nanoshell effect in bulk materials. Based on the effect, an optimal material structure was desig... In order to improve the multi-ion cooperative transition, we proposed and exploited a novel nanoscale effect, namely the nanoshell effect in bulk materials. Based on the effect, an optimal material structure was designed by coating the surfaces of Ca F_(2):Yb^(3+)micron size particles with ZrO_(2). An about 2 times higher intensity of cooperative luminescence is observed upon laser excitation at 980 nm. Dynamical analysis exhibits that the novel effect plays a key role in improving the performance of cooperative transitions. Our results also suggest that the nanoshell effect in bulk materials is likely to be significant in some special cases, which have not been reported yet in the literature. 展开更多
关键词 Yb^(3+)cluster ZrO_(2) NANOSHELL Enhancement cooperative luminescence Rare earths
原文传递
White up-conversion luminescence and highly-sensitive optical temperature sensing in Na_(3)La(VO_(4))_(2):Yb,Er,Tm,Ho phosphors 被引量:4
14
作者 Qi Xiao Xiumei Yin +4 位作者 Lin Lv Xinyao Dong Na Zhou Kuichao Liu Xixian Luo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第7期981-988,I0001,共9页
In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly... In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications. 展开更多
关键词 up-conversion Na_(3)La(VO_(4))_(2) White luminescence Temperature sensing Sensitivity Rare earths
原文传递
Effects of Bi^(3+) on down-/up-conversion luminescence,temperature sensing and optical transition properties of Bi^(3+)/Er^(3+)co-doped YNbO_(4) phosphors 被引量:2
15
作者 Xin Wang Xiangping Li +7 位作者 Hongquan Yu Sai Xu Jiashi Sun Lihong Cheng Xizhen Zhang Jinsu Zhang Yongze Cao Baojiu Chen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第3期381-389,I0001,共10页
A series of YNbO_(4):Bi^(3+) and YNbO_(4):Bi^(3+)/Er^(3+) phosphors were prepared by a conventional high temperature solid-state reaction method.The results of XRD and Rietveld refinement confirm that monoclinic phase... A series of YNbO_(4):Bi^(3+) and YNbO_(4):Bi^(3+)/Er^(3+) phosphors were prepared by a conventional high temperature solid-state reaction method.The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO_(4)samples are achieved.The down-/up-conversion luminescence of Er^(3+) ions was investigated under the excitation of ultraviolet light(327 nm)and near infrared light(980 nm).Under 327 nm excitation,broad visible emission band from Bi^(3+) ions and characteristic green emission peaks from Er^(3+) ions are simultaneously observed,while only strong green emissions from Er^(3+) ions are detected upon excitation of 980 nm.Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi^(3+) ions into Er^(3+)-doped YNbO_(4)phosphors.Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er^(3+)ion.Through the study of the temperature sensing property of Er^(3+) ion,it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi^(3+) ions.By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er^(3+) ions and the theoretical values calculated by Judd-Ofelt(J-O)theory,it is concluded that the temperature sensing property of Er^(3+) ions is greatly affected by the energy level splitting. 展开更多
关键词 YNbO_(4):Bi^(3+)/Er^(3+) Down-conversion luminescence up-conversion luminescence Temperature sensing Rare earths
原文传递
Green up-conversion luminescence in Yb^(3+)-Pr^(3+) co-doped BaRE_2ZnO_5(RE=Y,Gd) 被引量:1
16
作者 李琳 郭崇峰 +2 位作者 焦桓 李婷 郑仲铉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第12期1137-1140,共4页
Yb3+and Pr3+co-doped BaRE2 ZnO5(RE=Y,Gd) up-conversion(UC) phosphors were successfully synthesized by a modified sol-gel method.The processing parameters and optimal concentration of Pr3+and Yb3+were determine... Yb3+and Pr3+co-doped BaRE2 ZnO5(RE=Y,Gd) up-conversion(UC) phosphors were successfully synthesized by a modified sol-gel method.The processing parameters and optimal concentration of Pr3+and Yb3+were determined.The structures and luminescent properties of samples were characterized by X-ray diffraction(XRD) and photoluminescence spectra(PL).With the excitation of 980 nm laser diode,UC spectra showed five prominent emission bands centered at 484,514,546,656 and 670 nm,which were attributed to the1I6 →3H4,3P1 →3H4,3P0 →3H5,3P0 →3F2 and3P0 →3F3 transitions of Pr3+,respectively.In the light of the pump power dependence,the possible UC mechanism in Yb3+and Pr3+co-doped BaRE2 ZnO5(RE=Y,Gd) was proposed and discussed. 展开更多
关键词 PHOSPHOR up-conversion energy transfer luminescence rare earths
原文传递
Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm^3+:NaYF4 glass 被引量:1
17
作者 Jian-Ping Li Lian-Zhong Deng +5 位作者 Ye Zheng Peng-Peng Ding Tian-Qing Jia Zhen-Rong Sun Jian-Rong Qiu Shi-An Zhang 《Frontiers of physics》 SCIE CSCD 2020年第2期63-68,共6页
The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controll... The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controlling the UC lmiiinescence efficiency in Sm^3+:NaYF4 glass by 800-nm femtosec-ond laser pulse shaping using spectral phase modulation.The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity.Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm fem-tosecond lciser irradiation,we propose herein an excitation model combining non-resonant two-photon absorption with resonance-media ted three-photon absorption to explain the experimental observations. 展开更多
关键词 up-conversion luminescence rare earth ions quantum control FEMTOSECOND laser SPECTRAL phase
原文传递
Enhancement of the up-conversion luminescence of ZnO:Yb3+/Er3+ by photonic crystals 被引量:1
18
作者 ZHANG Xiao-hui ZHANG Hai-ming LI Yu-Jie 《Optoelectronics Letters》 EI 2019年第3期195-199,共5页
The opal photonic crystals(PCs) were assembled by vertical deposition of polystyrene microspheres(PS), in which Yb3+, Er3+ co-doped ZnO powders were deposited on the surface of PC films. The phase, structure and morph... The opal photonic crystals(PCs) were assembled by vertical deposition of polystyrene microspheres(PS), in which Yb3+, Er3+ co-doped ZnO powders were deposited on the surface of PC films. The phase, structure and morphology of the obtained samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). The performance of up-conversion photoluminescence(UCPL) was investigated by fluorescence spectrophotometer. The up-conversion(UC) emission of Zn O:Yb3+/Er3+ on the PC surface is notably enhanced when the UC emission wavelength is overlapped with the photonic bandgaps of opals, which is attributed to Bragg reflection of photonic bandgap. The results show that PCs may have potential applications in the enhancement of UCPL and optoelectronic devices. 展开更多
关键词 Er UC PC ZNO ENHANCEMENT of the up-conversion luminescence of ZnO:Yb
原文传递
Up-conversion photoluminescence emissions of CaMoO4:Pr3+/Yb3+ powder 被引量:1
19
作者 李金萍 张婷婷 +1 位作者 朱刚强 郑海荣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期645-651,共7页
CaMoO_4:Pr^(3+)/Yb^(3+) powder was successfully synthesized by a facile hydrothermal method. X-ray diffraction(XRD) patterns of samples confirmed tetragonal structure and morphology and sizes were confirmed b... CaMoO_4:Pr^(3+)/Yb^(3+) powder was successfully synthesized by a facile hydrothermal method. X-ray diffraction(XRD) patterns of samples confirmed tetragonal structure and morphology and sizes were confirmed by scanning electron microscopy(SEM) analyses. Particles consisted of regular micro-spheres with uniform sizes, the diameter of each sphere lay in the range of 3 to 4 μm. The up-conversion photoluminescence emission and its concentration dependence were investigated under infrared excitation at 980 nm. All the UC micro-particles exhibited the typical blue, green and red emissions. Dominant blue emissions originated from ~3P_0→~3H_4 and intense red emissions originated from ~3P0→~3F_2 transitions, and they both belonged to two-photon excitation processes in CaMoO_4: Yb^(3+)/Pr^(3+) powder. The optimum doping concentrations of Pr^(3+) and Yb^(3+) for the highest UC luminescence were 0.1 mol.% and 16 mol.%, respectively. The possible up-conversion mechanisms were discussed in detail. It was found that the UC emission could be well controlled from blue to green to white color by adjusting the concentration of Pr^(3+) ions in CaMoO_4:Pr^(3+)/Yb^(3+) microcrystal. So it is a candidate material for solid-state lasers, biological imaging, solar cells, and optical communications. 展开更多
关键词 up-conversion luminescence rare earths optical properties hydrothermal method
原文传递
Saturation effect of up-conversion luminescence from erbium-doped,silicatitania sol-gel powders
20
作者 Jesús Castaeda 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第5期420-425,共6页
The intensity of the visible up-conversion luminescence could be limited by a saturation effect produced by increased pump power. Visible up-conversion luminescence was obtained in erbium doped,silica-titania sol gel ... The intensity of the visible up-conversion luminescence could be limited by a saturation effect produced by increased pump power. Visible up-conversion luminescence was obtained in erbium doped,silica-titania sol gel powders under dynamical pumping at 1532 nm. The saturation effect was studied for erbium radiative transitions 2H9/2→4I15/2 (410 nm),2H11/2→4I15/2 (530 nm),4S3/2→4I15/2 (550 nm),2H9/2→4I13/2 (567 nm) and 4F9/2→4I15/2 (675 nm). The recorded up-conversion luminescence decreased when increasing excitation power. The results suggested that the saturation effect was determined by the pump power,the sample composition and the lifetimes of the corresponding first excited states. 展开更多
关键词 ERBIUM up-conversion luminescence saturation rare earths
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部