针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提...针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。展开更多
基金supported by the International Research Center of Big Data for Sustainable Development Goals [grant number CBAS2022GSP01]the National Natural Science Foundation of China [grant numbers 42276203 and 42030406]+1 种基金the Natural Science Foundation of Shandong Province [grant number ZR2021MD001]the Laoshan Laboratory [grant number LSKJ202204302].
文摘针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。