A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level...A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.展开更多
The evolved capacitor commutated converter(ECCC),embedded with anti-parallel thyristors based dual-directional full-bridge modules(APT-DFBMs),can effectively reduce commutation failure(CF)risks of line-commutated conv...The evolved capacitor commutated converter(ECCC),embedded with anti-parallel thyristors based dual-directional full-bridge modules(APT-DFBMs),can effectively reduce commutation failure(CF)risks of line-commutated converter-based high voltage direct current(HVDC)and improve the dynamic responses of capacitor-commutated converterbased HVDC.This paper proposes an improved coordinated control strategy for ECCC with the following improvements:(1)under normal operation state,series-connected capacitors can accelerate the commutation process,thereby reducing the overlap angle and increasing the successful commutation margin;(2)under AC fault conditions,the ability of ECCC to mitigate the CF issue no longer relies on the fast fault detection,since the capacitors inside the APT-DFBMs can consistently contribute to the commutation process and further reduce the CF probability;(3)the inserted capacitors can output certain amount of reactive power,increase the power factor,and reduce the required reactive power compensation capacity.Firstly,the proposed coordinated control approach is presented in detail,and the extra commutation voltage to mitigate the CFs provided by the proposed control approach and an existing approach is compared.Secondly,the mechanism of the improved control approach to accelerate commutation process and improve the power factor is analyzed theoretically.Finally,the detailed electromagnetic transient(EMT)simulation in PSCAD/EMTDC is conducted to validate the effectiveness of the proposed coordinated control.The results show that the proposed approach can present a further substantial improvement for ECCC,especially enhancing the CF mitigation effect.展开更多
基金supported in part by the US Office of Naval Research(N00014-16-1-312,N00014-18-1-2185)in part by the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.
文摘The evolved capacitor commutated converter(ECCC),embedded with anti-parallel thyristors based dual-directional full-bridge modules(APT-DFBMs),can effectively reduce commutation failure(CF)risks of line-commutated converter-based high voltage direct current(HVDC)and improve the dynamic responses of capacitor-commutated converterbased HVDC.This paper proposes an improved coordinated control strategy for ECCC with the following improvements:(1)under normal operation state,series-connected capacitors can accelerate the commutation process,thereby reducing the overlap angle and increasing the successful commutation margin;(2)under AC fault conditions,the ability of ECCC to mitigate the CF issue no longer relies on the fast fault detection,since the capacitors inside the APT-DFBMs can consistently contribute to the commutation process and further reduce the CF probability;(3)the inserted capacitors can output certain amount of reactive power,increase the power factor,and reduce the required reactive power compensation capacity.Firstly,the proposed coordinated control approach is presented in detail,and the extra commutation voltage to mitigate the CFs provided by the proposed control approach and an existing approach is compared.Secondly,the mechanism of the improved control approach to accelerate commutation process and improve the power factor is analyzed theoretically.Finally,the detailed electromagnetic transient(EMT)simulation in PSCAD/EMTDC is conducted to validate the effectiveness of the proposed coordinated control.The results show that the proposed approach can present a further substantial improvement for ECCC,especially enhancing the CF mitigation effect.