Different from the other conventional radars, the over the horizon radar (OTHR) faces complicated nonlinear coordinate transform due to electromagnetic wave propagation and reflection in ionospheres. A significant p...Different from the other conventional radars, the over the horizon radar (OTHR) faces complicated nonlinear coordinate transform due to electromagnetic wave propagation and reflection in ionospheres. A significant problem is the phenomenon of multi-path propagation. Considering it, the coordinate registration algorithms of planar measurement model and spherical measurement model are respectively derived in detail. Noticeably, a new transforming expression of apparent azimuth and an integrated form of transforming expressions from measurement vector to ground state vector in coordinate registration algorithm of spherical measurement model are proposed. And then simulations are made to verify the correctness of the proposed algorithms and expression. Besides this, the transforming error rate of slant range, Doppler and apparent azimuth of the two kinds of models are given respectively. Then the quantitative analysis of error rate is also given. It can be drawn a conclusion that the coordinate registration algorithms of planar measurement model and spherical measurement model are both correct.展开更多
基金This project was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China(200443).
文摘Different from the other conventional radars, the over the horizon radar (OTHR) faces complicated nonlinear coordinate transform due to electromagnetic wave propagation and reflection in ionospheres. A significant problem is the phenomenon of multi-path propagation. Considering it, the coordinate registration algorithms of planar measurement model and spherical measurement model are respectively derived in detail. Noticeably, a new transforming expression of apparent azimuth and an integrated form of transforming expressions from measurement vector to ground state vector in coordinate registration algorithm of spherical measurement model are proposed. And then simulations are made to verify the correctness of the proposed algorithms and expression. Besides this, the transforming error rate of slant range, Doppler and apparent azimuth of the two kinds of models are given respectively. Then the quantitative analysis of error rate is also given. It can be drawn a conclusion that the coordinate registration algorithms of planar measurement model and spherical measurement model are both correct.