This study focuses on analyzing the time series of DORIS beacon stations and plate motion of the Eurasian plate by applying Singular Spectrum Analysis(SSA)and Fast Fourier Transform(FFT).First,the rend terms and perio...This study focuses on analyzing the time series of DORIS beacon stations and plate motion of the Eurasian plate by applying Singular Spectrum Analysis(SSA)and Fast Fourier Transform(FFT).First,the rend terms and periodic signals are accurately separated by SSA,then,the periodic seasonal signals are detected using SSA,and finally,the main components of the time series are reconstructed successfully.The test results show that the nonlinear trends and seasonal signals of DORIS stations are detected successfully.The periods of the seasonal signals detected are year,half-year,and 59 days,etc.The contribution rates and slopes in E,N,and U directions of the trend items of each beacon station after reconstruction are obtained by least-square fitting.The velocities of these stations are compared with those provided by the GEODVEL2010 model,and it is found that they are in good agreement except the DIOB,MANB,and PDMB stations.Based on the DORIS coordinate time series,the velocity field on the Eurasian plate is constructed,and the test shows that the Eurasian plate moves eastward as a whole with an average velocity of 24.19±0.11 mm/y in the horizontal direction,and the average velocity of it is1.74±0.07 mm/y in the vertical direction.展开更多
Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordina...Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordinate time series data,with a time interval of 3 to 5 days before and after the earthquake.In the face of the huge amount of GPS coordinate time series data today,the conventional approach of relying on earthquake catalog data to assist in obtaining coseismic offset signals has become increasingly burdensome.To address this problem,we propose a new method for automatically detecting coseismic offset signals in GPS coordinate time series without an extra earthquake catalog for reference.Firstly,we pre-process the GPS coordinate time series data for filtering out stations with significant observations missing and detecting and removing outliers.Secondly,we eliminate other signals and errors in the GPS coordinate time series,such as trend and seasonal signals,leaving the coseismic offset signals as the primary signal.The resulting coordinate time series is then modeled using the first-order difference and data stacking method.The modeling method enables automatic detection of the coseismic offset signals in the GPS coordinate time series.The aforementioned method is applied to automatically detect coseismic offset signals using simulated data and the Searles Valley GPS data in California,USA.The results demonstrate the efficacy of our proposed method,successfully detecting coseismic offsets from vast amounts of GPS coordinate time series data.展开更多
As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored ...As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored in analyses of long time series. Typically two geomagnetic models, DIPOLE model and Inter- national Geomagnetic Reference Field (IGRF) model, are used for calculating HOI corrections. This paper investigates the effects of HOI correction caused by the DIPOLE model on coordinate time series. GPS data from 104 globally distributed International GNSS Service (IGS) stations spanning from January, 1999 to December, 2003 were reprocessed following up-to-date processing strategies utilizing GAMIT and GLOBK software. Two coordinate time series solutions before and after applying HOI corrections using the DIPOLE model were derived for studying the effects in terms of seasonal variations and noise amplitudes. The results show that after applying the HOI corrections calculated with DIPOLE, the noise amplitudes of the coordinate time series increased, especially in the north and east directions, and the increased amplitudes of the flicker noise were larger than those of the white noise. Furthermore, spurious periodic signals that were probably introduced by the HOI corrections from the DIPOLE model were also found. Moreover, an apparent increase was confirmed for the power spectra of most of the stations, especially in the north direction, and the amplitudes of both the annual and semi-annual signals also increased in the north and east directions. It can be inferred that the quality of the external data sources such as the geomagnetic model might be the key factors that lead to the above results. The results also suggest that we should be very careful when the DIPOLE model is used for HOI corrections.展开更多
The solid-earth-tide models IERS1992 and IERS2003 are used to analyze some GPS-baseline,vertical-component and zenith-tropospheric-delay data from the Crustal Movement GPS Continuous Observation Net-work of Shandong a...The solid-earth-tide models IERS1992 and IERS2003 are used to analyze some GPS-baseline,vertical-component and zenith-tropospheric-delay data from the Crustal Movement GPS Continuous Observation Net-work of Shandong and IGS stations. The results show that the differences between the baselines computed with the different models are at sub-millimeter level, and the differences in vertical component is direct proportional to station latitude. Also the amplitude of ZTD differences is about 0. 6-1.0 mm, which is 6% -8% of the amplitude of solid-earth-tide differences. Although these effects are quite small, to analyze non-tidal deformation correctly, we should still use a single standard for processing GPS data.展开更多
The stability of the coordination compounds of the first transition series metal ions(Mn(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)and Zn(Ⅱ))with 2-mercaptopyridine-1- oxide is reported.A coordination compound CoL_2 is synthesized and...The stability of the coordination compounds of the first transition series metal ions(Mn(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)and Zn(Ⅱ))with 2-mercaptopyridine-1- oxide is reported.A coordination compound CoL_2 is synthesized and characterized for the first time.展开更多
Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination usi...Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination using a wide variety of analytical tools and frameworks,to date very few studies have employed multifractal techniques to study the nature of interpersonal coordination across multiple spatiotemporal scales.In the present study we address this gap.Methods:We investigated the dynamics of a simple dyadic interpersonal coordination task where each participant manually controlled a virtual object in relation to that of his or her partner.We tested whether the resulting hand-movement time series exhibits multi-scale properties and whether those properties are associated with successful performance.Results:Using the formalism of multifractals,we show that the performance on the coordination task is strongly multi-scale,and that the multi-scale properties appear to arise from interaction-dominant dynamics.Further,we find that the measure of across-scale interactions,multifractal spectrum width,predicts successful performance at the level of the dyad.Conclusion:The results are discussed with respect to the implications of multifractals and interaction-dominance for understanding control in an interpersonal context.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41704015,41774001)the Shandong Natural Science Foundation of China(Grant No.ZR2017MD032,ZR2017MD003)+1 种基金a Project of Shandong Province Higher Education Science and Technology Program(Grant No.J17KA077)Talent introduction plan for Youth Innovation Team in universities of Shandong Province(innovation team of satellite positioning and navigation)。
文摘This study focuses on analyzing the time series of DORIS beacon stations and plate motion of the Eurasian plate by applying Singular Spectrum Analysis(SSA)and Fast Fourier Transform(FFT).First,the rend terms and periodic signals are accurately separated by SSA,then,the periodic seasonal signals are detected using SSA,and finally,the main components of the time series are reconstructed successfully.The test results show that the nonlinear trends and seasonal signals of DORIS stations are detected successfully.The periods of the seasonal signals detected are year,half-year,and 59 days,etc.The contribution rates and slopes in E,N,and U directions of the trend items of each beacon station after reconstruction are obtained by least-square fitting.The velocities of these stations are compared with those provided by the GEODVEL2010 model,and it is found that they are in good agreement except the DIOB,MANB,and PDMB stations.Based on the DORIS coordinate time series,the velocity field on the Eurasian plate is constructed,and the test shows that the Eurasian plate moves eastward as a whole with an average velocity of 24.19±0.11 mm/y in the horizontal direction,and the average velocity of it is1.74±0.07 mm/y in the vertical direction.
基金supported by the National Natural Science Foundation of China(No.42104008,42204006,41904031)the Jiangxi Provincial Natural Science Foundation(20232BAB213075)+1 种基金the Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology(DLLJ202016)Open Fund of Hubei Luojia Laboratory(No.230100020,230100019)。
文摘Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordinate time series data,with a time interval of 3 to 5 days before and after the earthquake.In the face of the huge amount of GPS coordinate time series data today,the conventional approach of relying on earthquake catalog data to assist in obtaining coseismic offset signals has become increasingly burdensome.To address this problem,we propose a new method for automatically detecting coseismic offset signals in GPS coordinate time series without an extra earthquake catalog for reference.Firstly,we pre-process the GPS coordinate time series data for filtering out stations with significant observations missing and detecting and removing outliers.Secondly,we eliminate other signals and errors in the GPS coordinate time series,such as trend and seasonal signals,leaving the coseismic offset signals as the primary signal.The resulting coordinate time series is then modeled using the first-order difference and data stacking method.The modeling method enables automatic detection of the coseismic offset signals in the GPS coordinate time series.The aforementioned method is applied to automatically detect coseismic offset signals using simulated data and the Searles Valley GPS data in California,USA.The results demonstrate the efficacy of our proposed method,successfully detecting coseismic offsets from vast amounts of GPS coordinate time series data.
文摘As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored in analyses of long time series. Typically two geomagnetic models, DIPOLE model and Inter- national Geomagnetic Reference Field (IGRF) model, are used for calculating HOI corrections. This paper investigates the effects of HOI correction caused by the DIPOLE model on coordinate time series. GPS data from 104 globally distributed International GNSS Service (IGS) stations spanning from January, 1999 to December, 2003 were reprocessed following up-to-date processing strategies utilizing GAMIT and GLOBK software. Two coordinate time series solutions before and after applying HOI corrections using the DIPOLE model were derived for studying the effects in terms of seasonal variations and noise amplitudes. The results show that after applying the HOI corrections calculated with DIPOLE, the noise amplitudes of the coordinate time series increased, especially in the north and east directions, and the increased amplitudes of the flicker noise were larger than those of the white noise. Furthermore, spurious periodic signals that were probably introduced by the HOI corrections from the DIPOLE model were also found. Moreover, an apparent increase was confirmed for the power spectra of most of the stations, especially in the north direction, and the amplitudes of both the annual and semi-annual signals also increased in the north and east directions. It can be inferred that the quality of the external data sources such as the geomagnetic model might be the key factors that lead to the above results. The results also suggest that we should be very careful when the DIPOLE model is used for HOI corrections.
文摘The solid-earth-tide models IERS1992 and IERS2003 are used to analyze some GPS-baseline,vertical-component and zenith-tropospheric-delay data from the Crustal Movement GPS Continuous Observation Net-work of Shandong and IGS stations. The results show that the differences between the baselines computed with the different models are at sub-millimeter level, and the differences in vertical component is direct proportional to station latitude. Also the amplitude of ZTD differences is about 0. 6-1.0 mm, which is 6% -8% of the amplitude of solid-earth-tide differences. Although these effects are quite small, to analyze non-tidal deformation correctly, we should still use a single standard for processing GPS data.
文摘The stability of the coordination compounds of the first transition series metal ions(Mn(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)and Zn(Ⅱ))with 2-mercaptopyridine-1- oxide is reported.A coordination compound CoL_2 is synthesized and characterized for the first time.
文摘Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination using a wide variety of analytical tools and frameworks,to date very few studies have employed multifractal techniques to study the nature of interpersonal coordination across multiple spatiotemporal scales.In the present study we address this gap.Methods:We investigated the dynamics of a simple dyadic interpersonal coordination task where each participant manually controlled a virtual object in relation to that of his or her partner.We tested whether the resulting hand-movement time series exhibits multi-scale properties and whether those properties are associated with successful performance.Results:Using the formalism of multifractals,we show that the performance on the coordination task is strongly multi-scale,and that the multi-scale properties appear to arise from interaction-dominant dynamics.Further,we find that the measure of across-scale interactions,multifractal spectrum width,predicts successful performance at the level of the dyad.Conclusion:The results are discussed with respect to the implications of multifractals and interaction-dominance for understanding control in an interpersonal context.