In this work, the synthesis and photoluminescence characteristics of two new phosphors Pr3+: CaYAlO4(CYA) and Pr3+/Tb3+: CYA for light emitting diodes(LEDs) are investigated. 0.5%(atom percentage) Pr3+: CYA exhibits t...In this work, the synthesis and photoluminescence characteristics of two new phosphors Pr3+: CaYAlO4(CYA) and Pr3+/Tb3+: CYA for light emitting diodes(LEDs) are investigated. 0.5%(atom percentage) Pr3+: CYA exhibits the largest bright yellow emission by varying the Pr3+ concentration, owing to the cross-relaxation process of 3P0 +3H4→ 1G4+1G4. The energy level diagram in Pr3+: CYA, especially the positions of 4f5 d level and 1S0 level, is discussed. By co-doping Tb3+ ions, the color coordinates of Pr3+/Tb3+: CYA phosphor can be tuned from yellow to white region. Finally, the strongest luminescence emission with color coordinates of(0.339, 0.364) located in the white region can be obtained in 0.3%Tb3+/0.5%Pr3+: CYA phosphor.展开更多
Dy3+/Eu3+ co-doped cubic lattice Na YF4 single crystal with high quality in the size of ~Φ1.0 cm×10.0 cm was grown by an improved Bridgman method using potassium fluoride(KF) as assistant flux. X-ray diffraction...Dy3+/Eu3+ co-doped cubic lattice Na YF4 single crystal with high quality in the size of ~Φ1.0 cm×10.0 cm was grown by an improved Bridgman method using potassium fluoride(KF) as assistant flux. X-ray diffraction(XRD), absorption spectra, excitation spectra and emission spectra are measured to investigate the phase and luminescent properties of the crystal. The effects of excitation wavelength and concentrations of Dy3+ and Eu3+ ions on the luminescent characteristics are analyzed. The Na YF4 single crystal with the doping molar concentrations of 1.205% Dy3+ and 0.366% Eu3+ exhibits an excellent white light emission with chromaticity coordinates of x=0.321, y=0.332. It indicates that the Dy3+/Eu3+ co-doped cubic lattice Na YF4 single crystal can be a potential luminescent material for the ultraviolet(UV) light excited white light emitting diode(w-LED).展开更多
SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assign...SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2(563 nm), 4G5/2-6H7/2(597 nm and 605 nm) and 4G5/2-6H9/2(644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+(A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage(CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes(LEDs).展开更多
基金supported by the Natural Science Foundation of Fujian University of Technology(No.4Y-Z15001)
文摘In this work, the synthesis and photoluminescence characteristics of two new phosphors Pr3+: CaYAlO4(CYA) and Pr3+/Tb3+: CYA for light emitting diodes(LEDs) are investigated. 0.5%(atom percentage) Pr3+: CYA exhibits the largest bright yellow emission by varying the Pr3+ concentration, owing to the cross-relaxation process of 3P0 +3H4→ 1G4+1G4. The energy level diagram in Pr3+: CYA, especially the positions of 4f5 d level and 1S0 level, is discussed. By co-doping Tb3+ ions, the color coordinates of Pr3+/Tb3+: CYA phosphor can be tuned from yellow to white region. Finally, the strongest luminescence emission with color coordinates of(0.339, 0.364) located in the white region can be obtained in 0.3%Tb3+/0.5%Pr3+: CYA phosphor.
基金supported by the National Natural Science Foundation of China(Nos.51472125 and 51272109)the K.C.Wong Magna Fund in Ningbo University
文摘Dy3+/Eu3+ co-doped cubic lattice Na YF4 single crystal with high quality in the size of ~Φ1.0 cm×10.0 cm was grown by an improved Bridgman method using potassium fluoride(KF) as assistant flux. X-ray diffraction(XRD), absorption spectra, excitation spectra and emission spectra are measured to investigate the phase and luminescent properties of the crystal. The effects of excitation wavelength and concentrations of Dy3+ and Eu3+ ions on the luminescent characteristics are analyzed. The Na YF4 single crystal with the doping molar concentrations of 1.205% Dy3+ and 0.366% Eu3+ exhibits an excellent white light emission with chromaticity coordinates of x=0.321, y=0.332. It indicates that the Dy3+/Eu3+ co-doped cubic lattice Na YF4 single crystal can be a potential luminescent material for the ultraviolet(UV) light excited white light emitting diode(w-LED).
基金supported by the National Natural Science Foundation of China(No.50902042)the Natural Science Foundation of Hebei Province in China(Nos.A2014201035 and E2014201037)the Education Office Research Foundation of Hebei Province in China(Nos.ZD2014036 and QN2014085)
文摘SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2(563 nm), 4G5/2-6H7/2(597 nm and 605 nm) and 4G5/2-6H9/2(644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+(A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage(CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes(LEDs).