With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t...As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.展开更多
This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed...This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink powe...This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.展开更多
Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p...Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of acti...In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.展开更多
In recent years, the penetration of renewable energy sources (RES) is increasing due to energy and environmental issues, causing several problems in the power system. These problems are usually more apparent in microg...In recent years, the penetration of renewable energy sources (RES) is increasing due to energy and environmental issues, causing several problems in the power system. These problems are usually more apparent in microgrids. One of the problems that could arise is frequency stability issue due to lack of inertia in microgrids. Lack of inertia in such system can lead to system instability when a large disturbance occurs in the system. To solve this issue, providing inertia support to the microgrids by a virtual synchronous generator (VSG) utilizing energy storage system is a promising method. In applying VSG, one important aspect is regarding the set value of the active power output from the VSG. The amount of allocated active power during normal operation should be determined carefully so that the frequency of microgrids could be restored to the allowable limits, as close as possible to the nominal value. In this paper, active power allocation of VSG using particle swarm optimization (PSO) is presented. The results show that by using VSG supported by active power allocation determined by the method, frequency stability and dynamic stability of the system could be improved.展开更多
With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper a...With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper analyzed how the voltage stability was influenced by different reactive power injection based on the simplified L-indicator of on-line voltage stability monitoring. According to the basic differential property of the simplified L-indicator, a general and normative analytical algorithm about reactive power optimization was deduced. The analytical algorithm can calculate the load node injected reactive power, and then the network can run in the optimal steady state on the basis of the calculation results. According to the simulation results of IEEE-14, IEEE-30, IEEE-57 and IEEE-118, the feasibility and effectiveness of the proposed algorithm to improve voltage stability and reduce the risk of grid collapse were verified.展开更多
Transmission network expansion planning (TNEP) is a challenging issue especially in new restructured electricity mar-kets environment. TNEP can be incorporated with reactive power planning in which the operating condi...Transmission network expansion planning (TNEP) is a challenging issue especially in new restructured electricity mar-kets environment. TNEP can be incorporated with reactive power planning in which the operating conditions will be satisfied. In this paper a combinatorial mathematical model has been presented to solve transmission expansion and reactive power planning problem (TEPRPP) simultaneously. The proposed model is a non-convex problem having a mixed integer nonlinear nature where the number of candidate solutions to be evaluated increases exponentially according to the system size. The objective function of TEPRPP comprises the new circuits’ investment and production costs as well as load curtailment penalty payments. A real genetic algorithm (RGA) aimed to obtaining a significant quality solution to handle such a complicated problem has been employed. An interior point method (IPM) is applied to solve the proposed concurrent optimization problem in the solution steps of TEPRPP model. This paper proposes a new methodology for the best location as well as the capacity of VAr sources;it is tested on two well-known systems;the Garver and IEEE 24-bus systems. The obtained results show the capability and the viability of the proposed TEPRPP model incorporating operating conditions.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To impr...Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.展开更多
A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain struc...A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.52107107).
文摘As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.
文摘This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
文摘This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.
文摘Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.61863023).
文摘In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.
文摘In recent years, the penetration of renewable energy sources (RES) is increasing due to energy and environmental issues, causing several problems in the power system. These problems are usually more apparent in microgrids. One of the problems that could arise is frequency stability issue due to lack of inertia in microgrids. Lack of inertia in such system can lead to system instability when a large disturbance occurs in the system. To solve this issue, providing inertia support to the microgrids by a virtual synchronous generator (VSG) utilizing energy storage system is a promising method. In applying VSG, one important aspect is regarding the set value of the active power output from the VSG. The amount of allocated active power during normal operation should be determined carefully so that the frequency of microgrids could be restored to the allowable limits, as close as possible to the nominal value. In this paper, active power allocation of VSG using particle swarm optimization (PSO) is presented. The results show that by using VSG supported by active power allocation determined by the method, frequency stability and dynamic stability of the system could be improved.
文摘With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper analyzed how the voltage stability was influenced by different reactive power injection based on the simplified L-indicator of on-line voltage stability monitoring. According to the basic differential property of the simplified L-indicator, a general and normative analytical algorithm about reactive power optimization was deduced. The analytical algorithm can calculate the load node injected reactive power, and then the network can run in the optimal steady state on the basis of the calculation results. According to the simulation results of IEEE-14, IEEE-30, IEEE-57 and IEEE-118, the feasibility and effectiveness of the proposed algorithm to improve voltage stability and reduce the risk of grid collapse were verified.
文摘Transmission network expansion planning (TNEP) is a challenging issue especially in new restructured electricity mar-kets environment. TNEP can be incorporated with reactive power planning in which the operating conditions will be satisfied. In this paper a combinatorial mathematical model has been presented to solve transmission expansion and reactive power planning problem (TEPRPP) simultaneously. The proposed model is a non-convex problem having a mixed integer nonlinear nature where the number of candidate solutions to be evaluated increases exponentially according to the system size. The objective function of TEPRPP comprises the new circuits’ investment and production costs as well as load curtailment penalty payments. A real genetic algorithm (RGA) aimed to obtaining a significant quality solution to handle such a complicated problem has been employed. An interior point method (IPM) is applied to solve the proposed concurrent optimization problem in the solution steps of TEPRPP model. This paper proposes a new methodology for the best location as well as the capacity of VAr sources;it is tested on two well-known systems;the Garver and IEEE 24-bus systems. The obtained results show the capability and the viability of the proposed TEPRPP model incorporating operating conditions.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.
基金supported by the Postdoctoral Research Funding Program of Jiangsu Province under Grant 2021K622C.
文摘A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.