Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control ...Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.展开更多
It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control...It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.展开更多
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,...This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance...Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.展开更多
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co...The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.展开更多
In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible ...In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.展开更多
Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Sinc...Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Since model predictive control(MPC) has a lot of advantages in modeling complex dynamic systems, it has been widely studied in traffic signal control over the past 20 years. There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks. Therefore, this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks. Meanwhile, typical performance evaluation metrics, solution methods, examples of simulations,and applications related to MPC-based TSC approaches are reported. More importantly, this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches. Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.展开更多
This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC gr...This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
An observation-driven method for coordinated standoff target tracking based on Model Predictive Control(MPC)is proposed to improve observation of multiple Unmanned Aerial Vehicles(UAVs)while approaching or loitering o...An observation-driven method for coordinated standoff target tracking based on Model Predictive Control(MPC)is proposed to improve observation of multiple Unmanned Aerial Vehicles(UAVs)while approaching or loitering over a target.After acquiring a fusion estimate of the target state,each UAV locally measures the observation capability of the entire UAV system with the Fisher Information Matrix(FIM)determinant in the decentralized architecture.To facilitate observation optimization,only the FIM determinant is adopted to derive the performance function and control constraints for coordinated standoff tracking.Additionally,a modified iterative scheme is introduced to improve the iterative efficiency,and a consistent circular direction control is established to maintain long-term observation performance when the UAV approaches its target.Sufficient experiments with simulated and real trajectories validate that the proposed method can improve observation of the UAV system for target tracking and adaptively optimize UAV trajectories according to sensor performance and UAV-target geometry.展开更多
针对定速地形跟随飞行全局离线规划方案数据存储量大、机动飞行油耗大等问题,提出基于级联模型预测控制(cascaded model predictive control,CMPC)的能量协调在线轨迹规划与跟踪方案。首先,利用飞行器纵向质点运动学模型设计模型预测控...针对定速地形跟随飞行全局离线规划方案数据存储量大、机动飞行油耗大等问题,提出基于级联模型预测控制(cascaded model predictive control,CMPC)的能量协调在线轨迹规划与跟踪方案。首先,利用飞行器纵向质点运动学模型设计模型预测控制(model predictive control,MPC)在线轨迹规划器。从能量分配原理出发确定速度变化规律,对于飞行时总能量不变而导致能量分配不合理的情况,引入虚拟控制量实现总能量动态调节,完成能量协调策略设计。其次,引入地形粗糙度概念描述地形起伏程度,基于此提出规划器自适应时域方案,对于不同地形实现预测时域动态调节。结合MPC轨迹跟踪控制器,并利用真实地形数据进行仿真实验。实验结果表明,所提方案可在与全局离线规划方案航迹差异不大的前提下,实现在线轨迹规划,显著降低油耗,提高航程极限,完成复杂地形的机动飞行任务。展开更多
基金supported by the Beijing Social Science Foundation Project(Grant No.18YJB011)the Ministry of Education Humanities and Social Science Research Fund for Youth Project(Grant No.20YJA790059)+2 种基金the National Social Science Foundation of China(Grant No.20FGLB022)the General Project of National Social Science Foundation of China(Grant No.19BGL052)the Innovation and Entrepreneurship Project of Beijing Forestry University(Grant No.X202110022111).
文摘Based on the general requirements of the coordinated development of"ecological livable"and"affluent life"in the rural revitalization strategy,the evaluation index system of desertification control was constructed,the interaction between desertification control and regional social economy and the internal space-time coordination mechanism were explored,and the quality of desertification control and its coordination degree with regional economic development were quantitatively analyzed.The decoupling mechanism of desertification governance society economy system were analyzed,and the high level for the government to promote desertification governance,constructing ecological economy coordinated development pattern to provide decision basis to Xizang desertification governance-social economic system interaction and coupling coordination development as the research object,introducing the coupling decoupling model to measure the coupling coordination model and system coordination and decoupling decoupling.Desertification control in Xizang shows a trend of gradual improvement,but the overall level is still not high and there is a lot of room for optimization.The coupling coordination degree of desertification control-social and economic system is in a steady fluctuation trend,rising from D value less than 0.55 in 2004 to 0.87 in 2018,in a state of coordinated development(good),and grey prediction analysis shows that D value is in a continuous rise.The coupling coordination degree of the six prefecture-level cities in Xizang and Ngari region is different in time and space,but the overall development trend is coordinated.The development index of desertification control and the socio-economic development index show the interaction of strong decoupling,strong negative decoupling and weak decoupling,and there are interaction effects of desertification control,economic development and social development at different scales.
基金Supported by the Foundation of Key Laboratory of Vehicle Advanced ManufacturingMeasuring and Control Technology(Beijing Jiaotong University)+1 种基金Ministry of Education,China(Grant No.014062522006)National Key Research Development Program of China(Grant No.2017YFB0103701)。
文摘It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is poor under high-speed and large-curvature conditions.In this study,an adaptive path tracking control strategy that coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control algorithm.The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness and update the path tracking system prediction model.To adaptively adjust the priorities of path tracking accuracy and vehicle stability,an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the cost function.An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed to improve the path tracking accuracy under high-speed and large-curvature conditions.To ensure vehicle stability,the sideslip angle,yaw rate and zero moment methods are used to construct optimization constraints based on the model predictive control frame.It is verified through simulation experiments that the proposed adaptive coordinated control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and largecurvature conditions.
基金“National Science and Technology Council”(NSTC 111-2221-E-027-088)。
文摘This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
基金supported by the Programme for Simulation Innovation(PSI)
文摘Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access.
基金supported by National Natural Science Foundation Joint Key Project of China(2016YFB0900900).
文摘The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.
文摘In recent years, researchers have been actively pursuing research into developing robots that can be useful in many fields of industry (e.g., service, medical, and aging care). Such robots must be safe and flexible so that they can coexist with people. Pneumatic actuators are useful for achieving this goal because they are lightweight units with natural compliance. Our research focuses on joint angle control for a pneumatically driven musculoskeletal model. In such a model, we use a one-degree-of-freedom joint model and a five-fingered robot hand as test beds. These models are driven by low pressure-driven pneumatic actuators, and mimic the mechanism of the human hand and musculoskeletal structure, which has an antagonistic muscle pair for each joint. We demonstrated a biologically inspired control method using the parameters antagonistic muscle ratio and antagonistic muscle activity. The concept of the method is based on coordination of an antagonistic muscle pair using these parameters. We have investigated the validity of the proposed method both theoretically and experimentally, developed a feedback control system, and conducted joint angle control by implementing the test beds.
基金supported in part by the National Natural Science Foundation of China(61603154,61773343,61621002,61703217)the Natural Science Foundation of Zhejiang Province(LY15F030021,LY19F030014)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT1800407)
文摘Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Since model predictive control(MPC) has a lot of advantages in modeling complex dynamic systems, it has been widely studied in traffic signal control over the past 20 years. There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks. Therefore, this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks. Meanwhile, typical performance evaluation metrics, solution methods, examples of simulations,and applications related to MPC-based TSC approaches are reported. More importantly, this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches. Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.
基金supported by National Natural Science Foundation of China(No.61473170)Key R&D Plan Project of Shandong Province,PRC(No.2016GSF115018)
文摘This paper proposes an optimized and coordinated model predictive control(MPC) scheme for doublyfed induction generators(DFIGs) with DC-based converter system to improve the efficiency and dynamic performance in DC grids. In this configuration, the stator and rotor of the DFIG are connected to the DC bus via voltage source converters, namely, a rotor side converter(RSC) and a stator side converter(SSC). Optimized trajectories for rotorflux and stator current are proposed to minimize Joule losses of the DFIG, which is particularly advantageous at low and moderate torque. The coordinated MPC scheme is applied to overcome the weaknesses of the field-oriented control technique in the rotor flux-oriented frame, which makes the rotor flux stable and the stator current track its reference closely and quickly. Lastly, simulations and experiments are carried out to validate the feasibility of the control scheme and to analyze the steady-state and dynamic performance of the DFIG.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
基金supported in part by the National Natural Science Foundation of China(Nos.62022092 and 61790550).
文摘An observation-driven method for coordinated standoff target tracking based on Model Predictive Control(MPC)is proposed to improve observation of multiple Unmanned Aerial Vehicles(UAVs)while approaching or loitering over a target.After acquiring a fusion estimate of the target state,each UAV locally measures the observation capability of the entire UAV system with the Fisher Information Matrix(FIM)determinant in the decentralized architecture.To facilitate observation optimization,only the FIM determinant is adopted to derive the performance function and control constraints for coordinated standoff tracking.Additionally,a modified iterative scheme is introduced to improve the iterative efficiency,and a consistent circular direction control is established to maintain long-term observation performance when the UAV approaches its target.Sufficient experiments with simulated and real trajectories validate that the proposed method can improve observation of the UAV system for target tracking and adaptively optimize UAV trajectories according to sensor performance and UAV-target geometry.