This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink powe...This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast a...This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.展开更多
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power ...In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.展开更多
Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power sy...Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power system, it is necessary to determine which method is suitable and efficient for the system’s load flow analysis. A power flow analysis method may take a long time and therefore prevent achieving an accurate result to a power flow solution because of continuous changes in power demand and generations. This paper presents analysis of the load flow problem in power system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods were compared for a power flow analysis solution. Simulation is carried out using Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation results were compared for number of iteration, computational time, tolerance value and convergence. The compared results show that Newton-Raphson is the most reliable method because it has the least number of iteration and converges faster.展开更多
Power factor (PF) is simply an expression of energy efficiency, which is always expressed in terms of percentage. Technically, PF is a ratio of real power in Kilowatts to the apparent power, which is always expressed ...Power factor (PF) is simply an expression of energy efficiency, which is always expressed in terms of percentage. Technically, PF is a ratio of real power in Kilowatts to the apparent power, which is always expressed in kilovolts amperes. In AC power analysis, power is always expressed in three ways, the real power (<i></span><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></i>), reactive power (<i></span><i><span style="font-family:Verdana;">Q</span></i><span style="font-family:Verdana;"></i>), and the apparent power (<i></span><i><span style="font-family:Verdana;">S</span></i><span style="font-family:Verdana;"></i>). The real power is the work useful power, while the reactive power is the wasted power in the 3-phase AC system, and the apparent power is the vectorial sum of the two powers. The increase of reactive power will reduce the presence of real power, thus making the power to be more expensive. In this paper, we will analyze the importance of improving the power factor by applying a bank of capacitors to a case study in Lebanon. Analysis of the economic improvement in the application of power factor correction is carried out. The result shows a reduction of 12 percent in the total cost.展开更多
Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmissi...Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmission lines. The possible contingencies of power components further worsen the scenario. This paper describes the methodology for the identification of critical transmission line by computing the real power and reactive power performance indices. It also demonstrates the importance of fuzzy logic technique used to rank the transmission lines according to the severity and demonstrated on IEEE-30 bus system.展开更多
This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity c...This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.展开更多
Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the...Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simula- tion tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.展开更多
This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The tr...This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.展开更多
文摘This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.
基金supported by the National Basic Research Programof China (2011CB711102)the National Natural Science Foundation of China (10672017,11002045)
文摘In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
文摘Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power system, it is necessary to determine which method is suitable and efficient for the system’s load flow analysis. A power flow analysis method may take a long time and therefore prevent achieving an accurate result to a power flow solution because of continuous changes in power demand and generations. This paper presents analysis of the load flow problem in power system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods were compared for a power flow analysis solution. Simulation is carried out using Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation results were compared for number of iteration, computational time, tolerance value and convergence. The compared results show that Newton-Raphson is the most reliable method because it has the least number of iteration and converges faster.
文摘Power factor (PF) is simply an expression of energy efficiency, which is always expressed in terms of percentage. Technically, PF is a ratio of real power in Kilowatts to the apparent power, which is always expressed in kilovolts amperes. In AC power analysis, power is always expressed in three ways, the real power (<i></span><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></i>), reactive power (<i></span><i><span style="font-family:Verdana;">Q</span></i><span style="font-family:Verdana;"></i>), and the apparent power (<i></span><i><span style="font-family:Verdana;">S</span></i><span style="font-family:Verdana;"></i>). The real power is the work useful power, while the reactive power is the wasted power in the 3-phase AC system, and the apparent power is the vectorial sum of the two powers. The increase of reactive power will reduce the presence of real power, thus making the power to be more expensive. In this paper, we will analyze the importance of improving the power factor by applying a bank of capacitors to a case study in Lebanon. Analysis of the economic improvement in the application of power factor correction is carried out. The result shows a reduction of 12 percent in the total cost.
文摘Restructured electric market environment allows the power wheeling transactions between the power producers and customers to meet the growing load demand. This will lead to the possible of congestion in the transmission lines. The possible contingencies of power components further worsen the scenario. This paper describes the methodology for the identification of critical transmission line by computing the real power and reactive power performance indices. It also demonstrates the importance of fuzzy logic technique used to rank the transmission lines according to the severity and demonstrated on IEEE-30 bus system.
基金the key research project of the National Natural Science Foundation of China(Grant No.50595413)
文摘This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.
文摘Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simula- tion tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.
基金supported by the National Natural Science Foundation of China (Grant Nos.10672017, 10632020 and 11002045)
文摘This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.