Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing ...Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.展开更多
Owing to the heterogeneity between functional units and resource scarcity,manufacturing firms have been struggling with intra-organizational coordination for productivity and innovation.Traditional organizational stru...Owing to the heterogeneity between functional units and resource scarcity,manufacturing firms have been struggling with intra-organizational coordination for productivity and innovation.Traditional organizational structures,such as linear-functional and matrix,may cause responsibility division and independent goals(Shahani,2020),and are more difficult to be adopted by large-sized innovative manufacturing firms for quantity production.This is based on a review of several new forms of organization(i.e.,network organization,multiteam system,and platform organization)compared with the traditional forms of organization(i.e.,linear,matrix,and business unit organization,among others).This study proposes a three-dimensional(3D)magic-cube organizational structure,considering the product dimensions,business,and administration.Moreover,the characteristics,propositions of system operation,system dynamic model,and working model of the 3D magic-cube organization are described.Finally,the 3D model is applied in a Chinese manufacturing firm to test its effectiveness.By redesigning the post and pay system,the pilot organization establishes a project-driven and cross-functional coordination mechanism,positively affecting the firm’s financial profit,output value,labor productivity,and income of per capita.The proposed 3D model can be adopted by large-or medium-sized manufacturing firms for product development and innovation.The implications of both practice and theory are also discussed in this study.展开更多
Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a ...Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a challenge area of research due to serious conflicts of both the solid and the void phase element densities in phase mixing domains of the topologies obtained by existing methods.Moreover,there is few work dealing with controlling distinct minimum feature length scales of real and void phase materials used in topology designs.A new method for solving the minimum length scale controlling problem of real and void material phases,is proposed.Firstly,we introduce two sets of coordinating design variable filters for these two material phases,and two distinct smooth Heaviside projection functions to destroy the serious conflicts in the existing methods(e.g.Guest Comput Methods Appl Mech Eng 199(14):123-135,2009).Then,by introducing an adaptive weighted 2-norm aggregation constraint function,we construct a coordinating topology optimization model to ensure distinct minimum length scale controls of real and void phase materials for the minimum compliance problem.By adopting a varied volume constraint limit scheme,this coordinating topology optimization model is transferred into a series of coordinating topology optimization sub-models so that the structural topology configuration can stably and smoothly changes during an optimization process.The structural topology optimization sub-models are solved by the method of moving asymptotes(MMA).Then,the proposed method is extended to the compliant mechanism design problem.Numerical examples are given to demonstrate that the proposed method is effective and can obtain a good 0/1 distribution final topology.展开更多
文摘Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.
基金This study is supported by the Key Project of the National Natural ScienceFoundation of China(Grant No.72132001).
文摘Owing to the heterogeneity between functional units and resource scarcity,manufacturing firms have been struggling with intra-organizational coordination for productivity and innovation.Traditional organizational structures,such as linear-functional and matrix,may cause responsibility division and independent goals(Shahani,2020),and are more difficult to be adopted by large-sized innovative manufacturing firms for quantity production.This is based on a review of several new forms of organization(i.e.,network organization,multiteam system,and platform organization)compared with the traditional forms of organization(i.e.,linear,matrix,and business unit organization,among others).This study proposes a three-dimensional(3D)magic-cube organizational structure,considering the product dimensions,business,and administration.Moreover,the characteristics,propositions of system operation,system dynamic model,and working model of the 3D magic-cube organization are described.Finally,the 3D model is applied in a Chinese manufacturing firm to test its effectiveness.By redesigning the post and pay system,the pilot organization establishes a project-driven and cross-functional coordination mechanism,positively affecting the firm’s financial profit,output value,labor productivity,and income of per capita.The proposed 3D model can be adopted by large-or medium-sized manufacturing firms for product development and innovation.The implications of both practice and theory are also discussed in this study.
基金supported by the National Natural Science Foundation of China(11772070 and 11372055)the Hunan Provincial Natural Science Foundation of China(2019JJ40296)。
文摘Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a challenge area of research due to serious conflicts of both the solid and the void phase element densities in phase mixing domains of the topologies obtained by existing methods.Moreover,there is few work dealing with controlling distinct minimum feature length scales of real and void phase materials used in topology designs.A new method for solving the minimum length scale controlling problem of real and void material phases,is proposed.Firstly,we introduce two sets of coordinating design variable filters for these two material phases,and two distinct smooth Heaviside projection functions to destroy the serious conflicts in the existing methods(e.g.Guest Comput Methods Appl Mech Eng 199(14):123-135,2009).Then,by introducing an adaptive weighted 2-norm aggregation constraint function,we construct a coordinating topology optimization model to ensure distinct minimum length scale controls of real and void phase materials for the minimum compliance problem.By adopting a varied volume constraint limit scheme,this coordinating topology optimization model is transferred into a series of coordinating topology optimization sub-models so that the structural topology configuration can stably and smoothly changes during an optimization process.The structural topology optimization sub-models are solved by the method of moving asymptotes(MMA).Then,the proposed method is extended to the compliant mechanism design problem.Numerical examples are given to demonstrate that the proposed method is effective and can obtain a good 0/1 distribution final topology.