Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emis...Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emission reduction in power industry. But under the current power purchase mode, grid companies must first perform the contract. This is extremely uneconomical and not environmentally friendly. Based on hedging theory, this paper proposes a power purchase optimization model using the strategy of “compression and compensation”. If outer price is lower than the contract price, the grid can compress contract power appropriately, leaving more space for purchasing electricity;if outer price is not attractive enough, the grid should timely improve contract proportion, compensating the deviations of contract caused by "compression". Based on the strategy of "compression and compensation", it can effectively reduce the abandoned wind and water, enhance the economic and social benefits of provincial power grid.展开更多
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
文摘Under the background of energy conservation, the grid companies should give priority to consumptive hydropower, wind power and other clean electricity to fulfill their social responsibility and promote the carbon emission reduction in power industry. But under the current power purchase mode, grid companies must first perform the contract. This is extremely uneconomical and not environmentally friendly. Based on hedging theory, this paper proposes a power purchase optimization model using the strategy of “compression and compensation”. If outer price is lower than the contract price, the grid can compress contract power appropriately, leaving more space for purchasing electricity;if outer price is not attractive enough, the grid should timely improve contract proportion, compensating the deviations of contract caused by "compression". Based on the strategy of "compression and compensation", it can effectively reduce the abandoned wind and water, enhance the economic and social benefits of provincial power grid.