The existing research of supply coordination under uncertain delivery time mainly focuses on the collaboration between the supplier and the manufacturer, which aim at minimizing the total cost of each side and finding...The existing research of supply coordination under uncertain delivery time mainly focuses on the collaboration between the supplier and the manufacturer, which aim at minimizing the total cost of each side and finding comparative optimal solutions under decentralized decision. In the supply coordination, the collaboration between suppliers in assembly system is usually not considered. As a result, the manufacturer’s production is often delayed due to mismatching delivery of components between suppliers. Therefore, to ensure supply coordination in assembly system, collaboration between suppliers should be taken into consideration. In this paper, an assembly system with two suppliers and one manufacturer under uncertain delivery time is considered. The model is established and optimal solution is given under decentralized decision. Furthermore, the cost functions of two suppliers are both convex, and a unique Nash equilibrium exists between two suppliers. Then the optimal decision under supply coordination is analyzed, which is regarded as a benchmark for supply coordination. Additionally, the total cost of the assembly system is jointly convex in agreed delivery time. To achieve supply coordination a bonus policy is explored in the assembly system under uncertain delivery time, and the total cost under bonus policy must be lower than under decentralized decision. Finally the numerical and sensitivity analysis shows the cost of assembly system under bonus policy equals that under supply coordination, and the cost of each side in assembly system under bonus policy is lower compared to that under decentralized decision. The proposed research minimizes the total cost of each side with bonus policy in assembly system, ensures the supply coordination between suppliers and the manufacturer, and improves the competiveness of the whole supply chain.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
The self-assembly of clusters in inorganic systems is an interesting subject. The self-assembly of big molecules has been well established in biological systems. In addition, the coordination chemistry of metal-sulfur...The self-assembly of clusters in inorganic systems is an interesting subject. The self-assembly of big molecules has been well established in biological systems. In addition, the coordination chemistry of metal-sulfur-nitrogen cluster complexes has been a very active and attracting field for many years as a result of the novelty and versatility of the crystal structures and reactivities of such clusters, as well as their potential applications as the models for the active sites in non-heme proteins. At the same time, there is currently considerable interest in the formation of metal complexes with heterocyclic ligands because of the diverse characteristics of ligands and their consequential wide range of applications.展开更多
The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission elect...The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission electron microscopy(HR-TEM) and N2 adsorption desorption and adsorption are used to study the effects of the synthesized process condition on the microstructure of the as-synthesized mesoporous Ti O2. The photocatalytic performances of as-synthesized samples are evaluated by the degradation of the formaldehyde under ultraviolet light irradiations. The results demonstrate that the as-synthesized mesoporous Ti O2 are anatase with the uniform size about 20-40 nm. The sample is prepared using cetyltrimethyl ammonium bromide(CTAB) as the template with average pore size distribution of 8.12 nm, specific surface area of 68.47 m2/g and pore volume of 0.213 m L/g. The samples show decomposition of formaldehyde 95.8% under ultraviolet light irradiations for 90 min. These results provide a basic experimental process for preparation mesoporous Ti O2, which will posses a broad prospect in terms of the applications in improving indoor air quality.展开更多
Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-...Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).展开更多
In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures...In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.展开更多
Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was...Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was characterized by FT-IR, XRD, SEM, TEM and AFM. Results show that CCG sheets formed monolayer film after assembled onto silicon wafer and there is a very tight chemical bond between sheets and wafer. Furthermore, the electrical measurements revealed that the monolayer graphene film has an excellent electrical conductivity.展开更多
The PET-CO2- film was prepared and the lipase was assembled on the surface of the PET-CO2- substrate The structure at the surface and activity of lipase/PET monolayer were studied by ATR-FTIR and AFM, and other methods.
Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spect...Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.展开更多
Chitosan-graft-poly(L-glutamic acid)(CS-g-PGA) copolymer was successfully synthesized by grafting polymerization of γ-benzyl-L-glutamate N-carboxyanhydride onto the modified chitosan chains. The self-assembly beh...Chitosan-graft-poly(L-glutamic acid)(CS-g-PGA) copolymer was successfully synthesized by grafting polymerization of γ-benzyl-L-glutamate N-carboxyanhydride onto the modified chitosan chains. The self-assembly behavior of such a CS-g-PGA amphiphilic copolymer was studied. The results show that spherical nanoparticles have been formed. The size of CS-g-PGA nanoparticles is found to be controlled by the grafting ratio of PGA. These bio-based polysaccharide/polypeptide hybrid nanoparticles with controllable size may have great potential application in biomedical fields, such as drug delivery systems.展开更多
To synthesize KLD-12 peptide with sequence of AcN-KLDLKLDLKLDL-CNH2 and trigger its self-assembly in vitro, to encapsulate rabbit MSCs within peptide hydrogel for 3-D culture and to evaluate the feasibility of using i...To synthesize KLD-12 peptide with sequence of AcN-KLDLKLDLKLDL-CNH2 and trigger its self-assembly in vitro, to encapsulate rabbit MSCs within peptide hydrogel for 3-D culture and to evaluate the feasibility of using it as injectable scaffold for tissue engineering of IVD. KLD-12 peptide was purified and tested with high performance liquid chromatography (HPLC) and mass spectroscopy (MS). KLD-12 peptide solutions with concentrations of 5 g/L, 2.5 g/L and 1 g/L were triggered to self-assembly with 1 xPBS in vitro, and the self-assembled peptide hydrogel was morphologically observed. Atomic force microscope (AFM) was employed to examine the inner structure of self-assembled peptide hydrogel. Mesenchymal stem cells (MSCs) were encapsulated within peptide hydrogel for 3-D culture for 2 weeks. Calcein-AM/PI fluorescence staining was used to detect living and dead cells. Cell viability was observed to evaluate the bioactivity of MSCs in KLD-12 peptide hydrogel. The results of HPLC and MS showed that the relative molecular mass of KLD-12 peptide was 1467.83, with a purity quotient of 95.36%. KLD-12 peptide at 5 g/L could self-assemble to produce a hydrogel, which was structurally integral and homogeneous and was able to provide sufficient cohesion to retain the shape of hydrogel. AFM demonstrated that the self-assembly of KLD-12 peptide hydrogel was successful and the assembled material was composed of a kind of nano-fiber with a diameter of 3040 nm and a length of hundreds of nm. Calcein-AM/PI fluorescence staining revealed that MSCs in KLD-12 peptide hydrogel grew well. Cell activity detection exhibited that the A value increased over the culture time. It is concluded that KLD-12 peptide was synthesized successfully and was able to self-assemble to produce nano-fiber hydrogel in vitro. MSCs in KLD-12 peptide hydrogel grew well and proliferated with the culture time. KLD-12 peptide hydrogel can serve as an excellent injectable material of biological scaffolds in tissue engineering of IVD.展开更多
Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. C...Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.展开更多
The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform as...The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.展开更多
Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials.However,the precise bottom-up synthesis of...Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials.However,the precise bottom-up synthesis of nanostructure arrays without templates or substrates is quite challenging because of the general occurrence of homogeneous nucleation and the difficult manipulation of noncovalent interactions.Herein,we first report the precisely manipulated synthesis of well-defined louver-like P-doped carbon nitride nanowire arrays(L-PCN)via a supramolecular self-assembly method by regulating the noncovalent interactions through hydrogen bond.With this strategy,CN nanowires align in the outer frame with the separation and spatial location achieving ultrastability and outstanding photoelectricity properties.Significantly,this self-assembly L-PCN exhibits a superior visible light-driven hydrogen evolution activity of 1872.9μmol h^−1 g^−1,rendering a^25.6-fold enhancement compared to bulk CN,and high photostability.Moreover,an apparent quantum efficiency of 6.93%is achieved for hydrogen evolution at 420±15 nm.The experimental results and first-principles calculations demonstrate that the remarkable enhancement of photocatalytic activity of L-PCN can be attributed to the synergetic effect of structural topology and dopant.These findings suggest that we are able to design particular hierarchical nanostructures with desirable performance using hydrogen-bond engineering.展开更多
Hierarchical CdCO3 nanostructures with complex morphologies, such as tetragonal, pentagonal and hexagonal nanorings, can be prepared via self-assembly of nanocrystals in a solvothermal environment. XRD pattern indicat...Hierarchical CdCO3 nanostructures with complex morphologies, such as tetragonal, pentagonal and hexagonal nanorings, can be prepared via self-assembly of nanocrystals in a solvothermal environment. XRD pattern indicated that the product is trigonal CdCO3 phase (PDF#850989) with cell constants a = 6.112 A and a = 47.4°. Based on our experimental results, a possible nanoring formation mechanism was proposed.展开更多
Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quan...Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.展开更多
Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resul...Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resultant peptide nanos- tructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical, β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. De- tailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.展开更多
Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of...Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of nanocrystallite in autoclave on the properties of as-prepared products. The results indicated that the amount of tetragonal zirconia varied with the preparation conditions. It increased with the increase of the concentration of KOH solution in precursor producing process and reduced with the prolongation of crystallization time. At the same time, the particle size and morphology were also affected by the preparation conditions. In addition, the self-assembled spindle- like aggregates were observed in present works.展开更多
Self-assembly cluster compound [WS4Cu3(PPh2Py)3Br]2·CH3OH (1) was synthesized by the reaction of (NH4)2WS4, CuBr and diphenyl-2-pyridyl-phosphine (PPh2Py) in CH3OH solution under a purified nitrogen atmosphere us...Self-assembly cluster compound [WS4Cu3(PPh2Py)3Br]2·CH3OH (1) was synthesized by the reaction of (NH4)2WS4, CuBr and diphenyl-2-pyridyl-phosphine (PPh2Py) in CH3OH solution under a purified nitrogen atmosphere using standard Schlenk techniques. Its structure was determined by X-ray crystallography. It crystallizes in the triclinic crystal system P-1 space group with a=1.178 6 (1) nm, b=1.302 6 (1) nm, c=1.991 7 (2) nm, α=74.671 (7)-, β=86.188 (8)-, γ=64.141 (6)-, V=2.649 5 (5) nm3, Z=1. The W center is slightly distorted from tetrahedral coordination geometry, and the structure is built up from three [Cu(PPh2Py)]+ units bridged by WS 24- multifunctional ligand to form a tetranuclear symmetrical cube-like molecule. Measurement of the nonlinear optical (NLO) properties using the Z-scan technique with an 8 ns pulsed laser at 532 nm shows that the compound possesses NLO absorption and effective self-focusing effect at α2=6.7×10-11 m/W and n2=5.64×10-18 m2/W in a 1.5×10-4 mol/L DMF solution.展开更多
Scalable fabrication of high-rate micro-supercapacitors(MSCs)is highly desired for on-chip integration of energy storage components.By virtue of the special self-assembly behavior of 2D materials during drying thin fi...Scalable fabrication of high-rate micro-supercapacitors(MSCs)is highly desired for on-chip integration of energy storage components.By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion,a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure.The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes.During multiple-pass printing,the porous microstructure effectively absorbs the successively printed inks,allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors,electrodes,and sold-state electrolytes.The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density,evidently outperforming the MSCs fabricated through general printing techniques.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 71102174)Beijing Municipal Natural Science Foundation of China(Grant Nos. 9123028, 9102016)+3 种基金Specialized Research Fund for Doctoral Program of Higher Education of China(Grant No. 20111101120019)Beijing Municipal Philosophy and Social Science Foundation of China(Grant No. 11JGC106)Program for New Century Excellent Talents in University of China(Grant Nos. NCET-10-0048,NCET-10-0043)Excellent Young Teacher in Beijing Institute of Technology of China(Grant No. 2010YC1307)
文摘The existing research of supply coordination under uncertain delivery time mainly focuses on the collaboration between the supplier and the manufacturer, which aim at minimizing the total cost of each side and finding comparative optimal solutions under decentralized decision. In the supply coordination, the collaboration between suppliers in assembly system is usually not considered. As a result, the manufacturer’s production is often delayed due to mismatching delivery of components between suppliers. Therefore, to ensure supply coordination in assembly system, collaboration between suppliers should be taken into consideration. In this paper, an assembly system with two suppliers and one manufacturer under uncertain delivery time is considered. The model is established and optimal solution is given under decentralized decision. Furthermore, the cost functions of two suppliers are both convex, and a unique Nash equilibrium exists between two suppliers. Then the optimal decision under supply coordination is analyzed, which is regarded as a benchmark for supply coordination. Additionally, the total cost of the assembly system is jointly convex in agreed delivery time. To achieve supply coordination a bonus policy is explored in the assembly system under uncertain delivery time, and the total cost under bonus policy must be lower than under decentralized decision. Finally the numerical and sensitivity analysis shows the cost of assembly system under bonus policy equals that under supply coordination, and the cost of each side in assembly system under bonus policy is lower compared to that under decentralized decision. The proposed research minimizes the total cost of each side with bonus policy in assembly system, ensures the supply coordination between suppliers and the manufacturer, and improves the competiveness of the whole supply chain.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Supported by the National Natural Science Foundation of China(Nos. 20476011 and 20371007).
文摘The self-assembly of clusters in inorganic systems is an interesting subject. The self-assembly of big molecules has been well established in biological systems. In addition, the coordination chemistry of metal-sulfur-nitrogen cluster complexes has been a very active and attracting field for many years as a result of the novelty and versatility of the crystal structures and reactivities of such clusters, as well as their potential applications as the models for the active sites in non-heme proteins. At the same time, there is currently considerable interest in the formation of metal complexes with heterocyclic ligands because of the diverse characteristics of ligands and their consequential wide range of applications.
基金Projects(51102026,51272032) supported by the Program for the National Natural Science Foundation of ChinaProject(11A014) supported by the Scientific Research Fund of Hunan Provincial Education DepartmentProject supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province,China
文摘The mesoporous Ti O2 has been synthesized by evaporation induced self assembly(EISA) method. The thermogravimetric/differential scanning calorimetric(TG/DSC), X-ray diffraction(XRD), high-resolution transmission electron microscopy(HR-TEM) and N2 adsorption desorption and adsorption are used to study the effects of the synthesized process condition on the microstructure of the as-synthesized mesoporous Ti O2. The photocatalytic performances of as-synthesized samples are evaluated by the degradation of the formaldehyde under ultraviolet light irradiations. The results demonstrate that the as-synthesized mesoporous Ti O2 are anatase with the uniform size about 20-40 nm. The sample is prepared using cetyltrimethyl ammonium bromide(CTAB) as the template with average pore size distribution of 8.12 nm, specific surface area of 68.47 m2/g and pore volume of 0.213 m L/g. The samples show decomposition of formaldehyde 95.8% under ultraviolet light irradiations for 90 min. These results provide a basic experimental process for preparation mesoporous Ti O2, which will posses a broad prospect in terms of the applications in improving indoor air quality.
文摘Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).
基金supported by the National Natural Science Foundation of China (51572194)the National Key Research and Development Program of China (2018YFB0105900)
文摘In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.
基金a Chinese Ministry of Education "Changjiang" Innovative Research Team Program(IRT1169)"the Fundamental Research Funds for the Central Universities" (303-47110117,303-47110118,2012-yb-04,and 2012-Ia-008)+4 种基金NCET(NCET-11-0688)RFDP(20110143120006)NSFHB(2011CDB429)NFSC(51101115)Innovative Research Funds of SKLWUT(2011-la-024,2012-Ia-008,2011-PY-2,2011-PY-3)
文摘Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was characterized by FT-IR, XRD, SEM, TEM and AFM. Results show that CCG sheets formed monolayer film after assembled onto silicon wafer and there is a very tight chemical bond between sheets and wafer. Furthermore, the electrical measurements revealed that the monolayer graphene film has an excellent electrical conductivity.
文摘The PET-CO2- film was prepared and the lipase was assembled on the surface of the PET-CO2- substrate The structure at the surface and activity of lipase/PET monolayer were studied by ATR-FTIR and AFM, and other methods.
基金Funded by the Natural Science Foundation of Hebei Province, China (No. E2008000537)the Foundation for Development of Science and Technology of Hebei Province, China (No. 07215156)the Open Research Foundation of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education, China (No. 2010412)
文摘Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.
基金Supported by the National Natural Science Foundation of China(Nos.21034003, 20974025, 10979022)
文摘Chitosan-graft-poly(L-glutamic acid)(CS-g-PGA) copolymer was successfully synthesized by grafting polymerization of γ-benzyl-L-glutamate N-carboxyanhydride onto the modified chitosan chains. The self-assembly behavior of such a CS-g-PGA amphiphilic copolymer was studied. The results show that spherical nanoparticles have been formed. The size of CS-g-PGA nanoparticles is found to be controlled by the grafting ratio of PGA. These bio-based polysaccharide/polypeptide hybrid nanoparticles with controllable size may have great potential application in biomedical fields, such as drug delivery systems.
基金supported by a"863"Key Project of the High Technology Research and Development Program of China(No.2006AA02A124)
文摘To synthesize KLD-12 peptide with sequence of AcN-KLDLKLDLKLDL-CNH2 and trigger its self-assembly in vitro, to encapsulate rabbit MSCs within peptide hydrogel for 3-D culture and to evaluate the feasibility of using it as injectable scaffold for tissue engineering of IVD. KLD-12 peptide was purified and tested with high performance liquid chromatography (HPLC) and mass spectroscopy (MS). KLD-12 peptide solutions with concentrations of 5 g/L, 2.5 g/L and 1 g/L were triggered to self-assembly with 1 xPBS in vitro, and the self-assembled peptide hydrogel was morphologically observed. Atomic force microscope (AFM) was employed to examine the inner structure of self-assembled peptide hydrogel. Mesenchymal stem cells (MSCs) were encapsulated within peptide hydrogel for 3-D culture for 2 weeks. Calcein-AM/PI fluorescence staining was used to detect living and dead cells. Cell viability was observed to evaluate the bioactivity of MSCs in KLD-12 peptide hydrogel. The results of HPLC and MS showed that the relative molecular mass of KLD-12 peptide was 1467.83, with a purity quotient of 95.36%. KLD-12 peptide at 5 g/L could self-assemble to produce a hydrogel, which was structurally integral and homogeneous and was able to provide sufficient cohesion to retain the shape of hydrogel. AFM demonstrated that the self-assembly of KLD-12 peptide hydrogel was successful and the assembled material was composed of a kind of nano-fiber with a diameter of 3040 nm and a length of hundreds of nm. Calcein-AM/PI fluorescence staining revealed that MSCs in KLD-12 peptide hydrogel grew well. Cell activity detection exhibited that the A value increased over the culture time. It is concluded that KLD-12 peptide was synthesized successfully and was able to self-assemble to produce nano-fiber hydrogel in vitro. MSCs in KLD-12 peptide hydrogel grew well and proliferated with the culture time. KLD-12 peptide hydrogel can serve as an excellent injectable material of biological scaffolds in tissue engineering of IVD.
基金supported by the National Major Basic Research Project of 2012CB934302the National 863 Program2011AA050518+1 种基金the Natural Science Foundation of China(Grant No.1117419711574203 and 61234005)
文摘Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.
基金supported by the Starting Foundation of Renmin University of China and the National Natural Science Foundation of China(No.20703066).
文摘The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.
基金the National Natural Science Foundation of China(Nos.51772085 and U1830138)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20190311)
文摘Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials.However,the precise bottom-up synthesis of nanostructure arrays without templates or substrates is quite challenging because of the general occurrence of homogeneous nucleation and the difficult manipulation of noncovalent interactions.Herein,we first report the precisely manipulated synthesis of well-defined louver-like P-doped carbon nitride nanowire arrays(L-PCN)via a supramolecular self-assembly method by regulating the noncovalent interactions through hydrogen bond.With this strategy,CN nanowires align in the outer frame with the separation and spatial location achieving ultrastability and outstanding photoelectricity properties.Significantly,this self-assembly L-PCN exhibits a superior visible light-driven hydrogen evolution activity of 1872.9μmol h^−1 g^−1,rendering a^25.6-fold enhancement compared to bulk CN,and high photostability.Moreover,an apparent quantum efficiency of 6.93%is achieved for hydrogen evolution at 420±15 nm.The experimental results and first-principles calculations demonstrate that the remarkable enhancement of photocatalytic activity of L-PCN can be attributed to the synergetic effect of structural topology and dopant.These findings suggest that we are able to design particular hierarchical nanostructures with desirable performance using hydrogen-bond engineering.
基金This work was supported by the the project of Nano-molecular Functional Materials of Fujian Province (2005HZ01-1)
文摘Hierarchical CdCO3 nanostructures with complex morphologies, such as tetragonal, pentagonal and hexagonal nanorings, can be prepared via self-assembly of nanocrystals in a solvothermal environment. XRD pattern indicated that the product is trigonal CdCO3 phase (PDF#850989) with cell constants a = 6.112 A and a = 47.4°. Based on our experimental results, a possible nanoring formation mechanism was proposed.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB923401)the National Natural Science Foundation of China(Grant Nos.10974087,11374145,11304150,and 11023002)
文摘Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.
基金supported by the National Natural Science Foundation of China(Grant Nos.21373270 and 11504431)the Fundamental Research Funds for Central Universities of China(Grant No.15CX02025A)
文摘Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resultant peptide nanos- tructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical, β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. De- tailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.
基金Supported by the project from Science and Technology Department of Zhejiang Province (2003C11027)
文摘Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions1 such as the precursor preparation condition and crystallization time of nanocrystallite in autoclave on the properties of as-prepared products. The results indicated that the amount of tetragonal zirconia varied with the preparation conditions. It increased with the increase of the concentration of KOH solution in precursor producing process and reduced with the prolongation of crystallization time. At the same time, the particle size and morphology were also affected by the preparation conditions. In addition, the self-assembled spindle- like aggregates were observed in present works.
基金Project(2006FJ4235) supported by the Post-Doctoral Foundation of Hunan Province, China
文摘Self-assembly cluster compound [WS4Cu3(PPh2Py)3Br]2·CH3OH (1) was synthesized by the reaction of (NH4)2WS4, CuBr and diphenyl-2-pyridyl-phosphine (PPh2Py) in CH3OH solution under a purified nitrogen atmosphere using standard Schlenk techniques. Its structure was determined by X-ray crystallography. It crystallizes in the triclinic crystal system P-1 space group with a=1.178 6 (1) nm, b=1.302 6 (1) nm, c=1.991 7 (2) nm, α=74.671 (7)-, β=86.188 (8)-, γ=64.141 (6)-, V=2.649 5 (5) nm3, Z=1. The W center is slightly distorted from tetrahedral coordination geometry, and the structure is built up from three [Cu(PPh2Py)]+ units bridged by WS 24- multifunctional ligand to form a tetranuclear symmetrical cube-like molecule. Measurement of the nonlinear optical (NLO) properties using the Z-scan technique with an 8 ns pulsed laser at 532 nm shows that the compound possesses NLO absorption and effective self-focusing effect at α2=6.7×10-11 m/W and n2=5.64×10-18 m2/W in a 1.5×10-4 mol/L DMF solution.
基金financial support of the Swedish Research Council through the Marie Sklodowska-Curie International Career Grant (No.2015-00395,co-funded by Marie Sklodowska-Curie Actions, through the Project INCA 600398)the Formas Foundation through the Future Research Leaders Grant (No.2016-00496)+3 种基金the AForsk Foundation (Grant No.17-352)the Olle Engkvist Byggmastare Foundation (Grant No.2014/799)the Academy of Finland (Grant No.288945 and 319408)Academy of Finland Research Infrastructure "Printed Intelligence Infrastructure" (PII-FIRI,Grant No. 320019)
文摘Scalable fabrication of high-rate micro-supercapacitors(MSCs)is highly desired for on-chip integration of energy storage components.By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion,a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure.The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes.During multiple-pass printing,the porous microstructure effectively absorbs the successively printed inks,allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors,electrodes,and sold-state electrolytes.The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density,evidently outperforming the MSCs fabricated through general printing techniques.