Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a ...Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a statistical method. The results demonstrate that roll diameter and reduction per pass significantly influence the properties of Bi(2223)/Ag superconducting tapes while roll speed does less and working friction the least. An optimized rolling process was therefore achieved according to the above results.展开更多
In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on ...In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism a...A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.展开更多
电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其...电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。展开更多
文摘Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a statistical method. The results demonstrate that roll diameter and reduction per pass significantly influence the properties of Bi(2223)/Ag superconducting tapes while roll speed does less and working friction the least. An optimized rolling process was therefore achieved according to the above results.
文摘In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
基金Project(2002CB312203) supported by the National Key Fundamental Research and Development Programof China pro-ject(60574030) supported bythe National Natural Science Foundation of China project(06FD026) supported bythe Natural Science Foun-dation of Hunan Province , China
文摘A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.
文摘电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。