Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsa...Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.展开更多
A H_(2)O_(2)etching strategy was adopted to introduce coordinatively unsaturated sites(CUS)on MoS_(2)-based catalysts for dibenzothiophene(DBT)hydrodesulfurization(HDS).The CUS concentrations on MoS_(2) slabs were fin...A H_(2)O_(2)etching strategy was adopted to introduce coordinatively unsaturated sites(CUS)on MoS_(2)-based catalysts for dibenzothiophene(DBT)hydrodesulfurization(HDS).The CUS concentrations on MoS_(2) slabs were finely regulated by changing the concentrations of H_(2)O_(2)solution.With the increasing H_(2)O_(2)concentrations(0.1–0.3 mol/L),The CUS concentrations on MoS_(2) slabs increased gradually.However,the high-concentration H_(2)O_(2)etching(0.5 mol/L)increased the MoOxSy and MoO_(3) contents on MoS_(2) slabs compared to etching with the H_(2)O_(2)concentration of 0.3 mol/L,which led to the less CUS concentration in the sulfided Mo–H-0.5 catalyst than in the sulfided Mo–H-0.3 catalyst.A microstructure-activity correlation indicated that the CUS introduced by H_(2)O_(2)etching on MoS_(2) slabs significantly enhanced DBT HDS.Different Co loadings were further introduced into Mo–H-0.3,which had the most CUS concentration,and the corresponding 0.2-CoMo catalyst with the highest CoMoS content(3.853 wt%)exhibited the highest reaction rate constant of 6.95×10^(−6)mol g^(−1)s^(−1)among these CoMo catalysts.展开更多
Defect sites on oxide semiconductors play a crucial role in promoting photocatalytiperformance and mod-ulating the bandgap structure of photocatalysts.However,the role of interfacial coordinatively unsatu-rated defect...Defect sites on oxide semiconductors play a crucial role in promoting photocatalytiperformance and mod-ulating the bandgap structure of photocatalysts.However,the role of interfacial coordinatively unsatu-rated defect sites between metal and oxide in photocatalysis is still under debate.So,we designed an experiment to probe the role of interfacial coordinatively unsaturated defect sites.In this work,a se-ries of Ti/TiO_(2) photocatalysts with varying concentrations of interfacial Ti^(3+)sites were prepared through an epitaxial growth method under hydrothermal conditions.Through experimental and computational investigations,the roles of interfacial defect sites were discussed in detail.On the one hand,the inter-facial coordinatively unsaturated Ti^(3+)sites could act as visible-light-responsive sites in photocatalytic reactions due to the overlap and hybridization of multiple electronic orbitals.On the other hand,the Ti/TiO_(2) interface exhibited a certain degree of metallic character near the Fermi level because of the par-tial delocalization and redistribution of electrons,facilitating the charge migration and separation across the metal-oxide interface.Consequently,the obtained Ti/TiO_(2) catalysts showed notably enhanced charge transfer efficiency and visible light photocatalytic activity compared to their pristine counterparts.This work may provide a new perspective to interfacial defect engineering in classic metal/oxide heterojunc-tion photocatalysts and figure a more precise direction to synthesize higher effective photocatalysts for environmental governance.展开更多
基金supported by the National Natural Science Fundation of China(21722303,21421001)the Municipal Natural Science Fund of Tianjin(18JCJQJC47400,18JCZDJC37400)111 Project(B12015,B18030)~~
文摘Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.
基金support of the National Natural Science Foundation of China(Grant Nos.21978323 and 22108145).
文摘A H_(2)O_(2)etching strategy was adopted to introduce coordinatively unsaturated sites(CUS)on MoS_(2)-based catalysts for dibenzothiophene(DBT)hydrodesulfurization(HDS).The CUS concentrations on MoS_(2) slabs were finely regulated by changing the concentrations of H_(2)O_(2)solution.With the increasing H_(2)O_(2)concentrations(0.1–0.3 mol/L),The CUS concentrations on MoS_(2) slabs increased gradually.However,the high-concentration H_(2)O_(2)etching(0.5 mol/L)increased the MoOxSy and MoO_(3) contents on MoS_(2) slabs compared to etching with the H_(2)O_(2)concentration of 0.3 mol/L,which led to the less CUS concentration in the sulfided Mo–H-0.5 catalyst than in the sulfided Mo–H-0.3 catalyst.A microstructure-activity correlation indicated that the CUS introduced by H_(2)O_(2)etching on MoS_(2) slabs significantly enhanced DBT HDS.Different Co loadings were further introduced into Mo–H-0.3,which had the most CUS concentration,and the corresponding 0.2-CoMo catalyst with the highest CoMoS content(3.853 wt%)exhibited the highest reaction rate constant of 6.95×10^(−6)mol g^(−1)s^(−1)among these CoMo catalysts.
基金financialy supported by the National Key Research and Development Plan of China (No.2016YFC0209305)the Science and Technology Plans of Tianjin (No.18PTZWHZ00180)+1 种基金the Major National Science and Technology Projects (No.2017ZX07106001)the Tianjin Development Program for Innovation and Entrepreneurship。
文摘Defect sites on oxide semiconductors play a crucial role in promoting photocatalytiperformance and mod-ulating the bandgap structure of photocatalysts.However,the role of interfacial coordinatively unsatu-rated defect sites between metal and oxide in photocatalysis is still under debate.So,we designed an experiment to probe the role of interfacial coordinatively unsaturated defect sites.In this work,a se-ries of Ti/TiO_(2) photocatalysts with varying concentrations of interfacial Ti^(3+)sites were prepared through an epitaxial growth method under hydrothermal conditions.Through experimental and computational investigations,the roles of interfacial defect sites were discussed in detail.On the one hand,the inter-facial coordinatively unsaturated Ti^(3+)sites could act as visible-light-responsive sites in photocatalytic reactions due to the overlap and hybridization of multiple electronic orbitals.On the other hand,the Ti/TiO_(2) interface exhibited a certain degree of metallic character near the Fermi level because of the par-tial delocalization and redistribution of electrons,facilitating the charge migration and separation across the metal-oxide interface.Consequently,the obtained Ti/TiO_(2) catalysts showed notably enhanced charge transfer efficiency and visible light photocatalytic activity compared to their pristine counterparts.This work may provide a new perspective to interfacial defect engineering in classic metal/oxide heterojunc-tion photocatalysts and figure a more precise direction to synthesize higher effective photocatalysts for environmental governance.