A ^(13)C-NMR method is presented for a quantitative determination of the respective monomercomposition and sequence distributions in ethylene-1-octene copolymers prepared with supportedtitanium/magnesium catalyst. On ...A ^(13)C-NMR method is presented for a quantitative determination of the respective monomercomposition and sequence distributions in ethylene-1-octene copolymers prepared with supportedtitanium/magnesium catalyst. On the basis of the sequence distributions, the ethylene-1-octenecopolymerization mechanism was studied. It was found that the observed sequence distributions inethylene-1-octene copolymers are satisfactorily predicted by the two-site model M/M,in whichthe copolymerization proceeds according to first-order Markovian statistics at the two differentsites.展开更多
The phase transition from tetragonal form II to hexagonal form I was studied for the butene-1/ethylene and butene-1/1,5- hexadiene random copolymers, which have comparable molecular weight but distinct linear ethylene...The phase transition from tetragonal form II to hexagonal form I was studied for the butene-1/ethylene and butene-1/1,5- hexadiene random copolymers, which have comparable molecular weight but distinct linear ethylene and ringlike methylene-1,3- cyclopentane (MCP) structural co-units, respectively. It is known that this solid phase transition follows the nucleation-growth mechanism, so the stepwise annealing protocol was utilized to investigate the influences of co-units on the optimal nucleation and growth temperatures. Compared with optimal nucleation and growth temperatures of-10 and 3 5 ℃, respectively, in polybutene-1 homopolymer, two butene-1/ethylene copolymers with 1.5 mol% and 4.3 mol% co-units have the slightly lower optimal nucleation temperature of-15 ℃ but much higher optimal growth temperature of 50 ℃. Clearly, the effect of ethylene co-unit is more significant on varying optimal temperature for growth than for nucleation. Furthermore, when the incorporated co-unit is ringlike MCP, the optimal nucleation temperature is -15 ℃ for 2.15 mol% co-units, the same with above BE copolymers, but -13 ℃ for a very low concentration of 0.65 mol%. Interestingly, the optimal growth temperature of butene-1/1,5-hexadiene copolymers with 0.65 mo1%-2.15 mol% MCP co- units increases to 55 ℃, which is also independent on co-unit concentration. These obtained values of optimal temperatures provide crucial parameters for rapid II-I phase transition.展开更多
基金This work was supported by the National Natural Science Foundation of China
文摘A ^(13)C-NMR method is presented for a quantitative determination of the respective monomercomposition and sequence distributions in ethylene-1-octene copolymers prepared with supportedtitanium/magnesium catalyst. On the basis of the sequence distributions, the ethylene-1-octenecopolymerization mechanism was studied. It was found that the observed sequence distributions inethylene-1-octene copolymers are satisfactorily predicted by the two-site model M/M,in whichthe copolymerization proceeds according to first-order Markovian statistics at the two differentsites.
基金supported by the National Natural Science Foundation of China(Nos.51573132 and 51633009)Tianjin Natural Science Foundation(No.16JCQNJC02700)
文摘The phase transition from tetragonal form II to hexagonal form I was studied for the butene-1/ethylene and butene-1/1,5- hexadiene random copolymers, which have comparable molecular weight but distinct linear ethylene and ringlike methylene-1,3- cyclopentane (MCP) structural co-units, respectively. It is known that this solid phase transition follows the nucleation-growth mechanism, so the stepwise annealing protocol was utilized to investigate the influences of co-units on the optimal nucleation and growth temperatures. Compared with optimal nucleation and growth temperatures of-10 and 3 5 ℃, respectively, in polybutene-1 homopolymer, two butene-1/ethylene copolymers with 1.5 mol% and 4.3 mol% co-units have the slightly lower optimal nucleation temperature of-15 ℃ but much higher optimal growth temperature of 50 ℃. Clearly, the effect of ethylene co-unit is more significant on varying optimal temperature for growth than for nucleation. Furthermore, when the incorporated co-unit is ringlike MCP, the optimal nucleation temperature is -15 ℃ for 2.15 mol% co-units, the same with above BE copolymers, but -13 ℃ for a very low concentration of 0.65 mol%. Interestingly, the optimal growth temperature of butene-1/1,5-hexadiene copolymers with 0.65 mo1%-2.15 mol% MCP co- units increases to 55 ℃, which is also independent on co-unit concentration. These obtained values of optimal temperatures provide crucial parameters for rapid II-I phase transition.