CuO/γ-Al2O3 catalysts were prepared by impregnation with different CuO loadings. The dispersion of CuO supported on γ-Al2O3 support was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ...CuO/γ-Al2O3 catalysts were prepared by impregnation with different CuO loadings. The dispersion of CuO supported on γ-Al2O3 support was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and temperature programmed reduction (TPR). The dispersion threshold of CuO in γ-Al2O3 determined by X-ray quantitative analysis was 0.275 g/g, i.e., 0.275CuAl. Highly dispersed CuO or crystalline CuO would appear on the γ-Al2O3 support when CuO loading was below or more than its dispersion threshold. TPR experiments show that reduction peak temperature ranges of 0.1CuAl and pure CuO are 420-690 °C and 290-380 °C, respectively. 0.1CuAl is not easily reduced due to interaction between CuO and γ-Al2O3. 0.5CuAl shows a two-step reduction range during 210-300 °C and 410-730 °C, which confirms the existence of highly dispersed CuO and crystalline CuO. The sulfation experiments show the optimal CuO loading amount is far below its dispersion threshold, and copper oxide supported on γ-Al2O3 is in the form of submonolayer.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were...The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.展开更多
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi...A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and i...The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and infrared spectroscopy analyses. The micro-flotation results show that combined use of NaBX+DDA yields better effect than using NaBX at pH 7-11 only, and the optimal molar ratio of NaBX to DDA is 2: 1. The actual ores flotation shows that when the dosage of NaBX+DDA is (100+54) g/t, the copper concentrate grade and recovery are 15.93% and 76.73%, respectively. The fluorescent pyrene probe test demonstrates that the NaBX+DDA can reduce the micelle concentration in the pulp. The zeta potential and the infrared spectroscopy analyses indicate that chemical adsorption, hydrogen-bonding and electrostatic interaction can help to adsorb NaBX+DDA on the surface of malachite. Meantime, copper xanthate and copper-amine complexes may be generated during the adsorption process.展开更多
The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficie...The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.展开更多
Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore c...Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.展开更多
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi...Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.展开更多
One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper be...One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.展开更多
The synthesis of a copper(II) oxide–montmorillonite composite and its application in the removal of lead(II) ions in solution were investigated. The Acros Organics (ACOR) montmorillonite was activated using potassium...The synthesis of a copper(II) oxide–montmorillonite composite and its application in the removal of lead(II) ions in solution were investigated. The Acros Organics (ACOR) montmorillonite was activated using potassium hydroxide solution. The activated ACOR montmorillonite was titrated with copper(II) nitrate solution to produce the copper(II) oxide–montmorillonite composite. Adsorption experiments were conducted using batch-mode techniques under reducing conditions at ambient temperature. The reaction mechanism indicated a higher proton coefficient, greater intraparticle diffusion, and higher mass transfer rates compared with those achieved with bare montmorillonite. The intraparticle diffusion constant derived from the slope was 2.93^-3 (mg·g^–1·min^–0.5), and the intercept C was 9.86,≠ 0. In the presence of a CuO coating, the adsorption efficiency was 85.55% at pH 4 and 89.62% at pH 7. Therefore, the copper(II) oxide-montmorillonite composite, as a novel adsorbent with a very high adsorption capacity, exhibited substantially enhanced adsorption of Pb^2+ ions compared with bare montmorillonite.展开更多
Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first t...Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were...Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were as follows: the concentration of CuSO4 solution was 0.1 mol·L^-1,NaOH solution 4 mol·L^-1,the dropping rate of the NaOH solution 50 mL·min^-1,the reaction temperature 20℃the pH value of the reaction terminal 13,and the stirring rate 1200 r·min^-1. The chain nano-CuO grains were obtained through the microwave radiation of the Cu(OH)2 nano-fibers.展开更多
A microreactor system and TPD techniques were used to study the reaction kinetics of the CO+ NO reaction and the adsorption of CO,NO,CO_2 and N_2O over Cu-Mn-O(Ⅰ)and Cu-Mn-Ce-O(Ⅱ) catalysts.The results show that the...A microreactor system and TPD techniques were used to study the reaction kinetics of the CO+ NO reaction and the adsorption of CO,NO,CO_2 and N_2O over Cu-Mn-O(Ⅰ)and Cu-Mn-Ce-O(Ⅱ) catalysts.The results show that the catalytic activity of(Ⅱ)is higher than that of(Ⅰ)for the CO+NO reac- tion,and the higher the conversion of NO,the larger was the activity difference between(Ⅰ)and(Ⅱ).For (Ⅰ)the rate of NO elimination is dependent on the partial pressures of NO,CO,CO_2 with the kinetics or- ders of 0.48,0.56,0.08,respectively.The TPD study shows that the presence of Ce in(Ⅱ)may promote the adsorption of NO,CO on the surface,i.e.an increase of the coverage θ_(NO),θ_(CO),which result in a decrease of the hindrance of the reaction products.For CO_2 and N_2O the situation is in the opposite,the presence of Ce makes the θ_(CO)_2)and θ_(NO)on(Ⅱ)decrease,which weakens the inhibition of CO_2 for the reaction.展开更多
The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solut...The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solution used on the curing,soaking,and leaching behavior of ag-glomerations.The results revealed that Portland cement(3CaO·SiO_(2),2CaO·SiO_(2),and 3CaO·Al_(2)O_(3))was the optimal binder for obtaining a well-shaped,stable agglomeration structure.A higher extraction rate was achieved when using Portland cement than that obtained using sodi-um silicate,gypsum,or acid-proof cement.An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and desirable porosity.Using computed tomography(CT)and MATLAB,the porosity of two-dimensional CT images in sample concentrations L1-L3 was observed to increase at least 4.5vol%after acid leaching.Ore agglomerations began to be heavily destroyed and even to disinteg-rate when the sulfuric acid solution concentration was higher than 30 g/L,which was caused by the excessive accumulation of reaction products and residuals.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o...The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.展开更多
E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly...E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly alternative be developed. The approach that involves preparing p -benzoquinone by the catalytic oxidation of benzene with hydrogen peroxide (H 2 O 2 ) over copper-modi ed titanium silicalite-1 (Cu/TS-1) has a certain superiority due to its green synthesis and mild reaction condi- tions. In this study, Cu/TS-1 catalyst was prepared by the wet impregnation of TS-1 with an aqueous solution of Cu(NO 3 ) 2 and then characterized by X-ray di raction, Fourier transform infrared spectroscopy, di use re ectance UV Vis spectros- copy, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray uorescence, and analysis of the N 2 adsorption desorption isotherms. The results reveal that Cu species exist mainly in the form of amorphous CuO that is well dispersed on the surface of catalysts, with no major change in the molecular sieve framework. After optimizing the reaction conditions, a desirable p -benzoquinone selectivity (88.4%) and benzene conversion (18.3%) were obtained when the doping of Cu in Cu/TS-1 is 1.95 wt%. In addition, Cu/TS-1 can be conveniently regenerated, showing a slight decrease in catalytic capability after initial use, which then stabilizes in subsequent circulations. The satisfactory stability and low cost of synthesizing Cu/TS-1 give this method considerable potential for further industrialization.展开更多
基金Project (Jinchuan 201114) supported by the Pre-Research Foundation of Jinchuan Group Ltd., ChinaProject (2011148) supported by the Analysis and Testing Foundation of Kunming University of Science and Technology, China
文摘CuO/γ-Al2O3 catalysts were prepared by impregnation with different CuO loadings. The dispersion of CuO supported on γ-Al2O3 support was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and temperature programmed reduction (TPR). The dispersion threshold of CuO in γ-Al2O3 determined by X-ray quantitative analysis was 0.275 g/g, i.e., 0.275CuAl. Highly dispersed CuO or crystalline CuO would appear on the γ-Al2O3 support when CuO loading was below or more than its dispersion threshold. TPR experiments show that reduction peak temperature ranges of 0.1CuAl and pure CuO are 420-690 °C and 290-380 °C, respectively. 0.1CuAl is not easily reduced due to interaction between CuO and γ-Al2O3. 0.5CuAl shows a two-step reduction range during 210-300 °C and 410-730 °C, which confirms the existence of highly dispersed CuO and crystalline CuO. The sulfation experiments show the optimal CuO loading amount is far below its dispersion threshold, and copper oxide supported on γ-Al2O3 is in the form of submonolayer.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
文摘The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject(2014LY36)supported by the Science and Technology Project of Longyan CityChina
文摘A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of China
文摘The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and infrared spectroscopy analyses. The micro-flotation results show that combined use of NaBX+DDA yields better effect than using NaBX at pH 7-11 only, and the optimal molar ratio of NaBX to DDA is 2: 1. The actual ores flotation shows that when the dosage of NaBX+DDA is (100+54) g/t, the copper concentrate grade and recovery are 15.93% and 76.73%, respectively. The fluorescent pyrene probe test demonstrates that the NaBX+DDA can reduce the micelle concentration in the pulp. The zeta potential and the infrared spectroscopy analyses indicate that chemical adsorption, hydrogen-bonding and electrostatic interaction can help to adsorb NaBX+DDA on the surface of malachite. Meantime, copper xanthate and copper-amine complexes may be generated during the adsorption process.
基金Project(2005BA639C) supported by the National Science and Technology Development of China
文摘The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.
基金Projects 50604016 supported by the National Natural Science Foundation of China2007BAB22B01 by the 11th Five-Year Plan of National Science and Technology of China
文摘Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)China Postdoctoral Science Foundation(No.2018T111000)Applied Basic Research Foundation of Yunnan Province(No.2018FD035).
文摘Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.
文摘One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.
基金the Niger Delta University for the usual research allowances provided for the running of research projects.
文摘The synthesis of a copper(II) oxide–montmorillonite composite and its application in the removal of lead(II) ions in solution were investigated. The Acros Organics (ACOR) montmorillonite was activated using potassium hydroxide solution. The activated ACOR montmorillonite was titrated with copper(II) nitrate solution to produce the copper(II) oxide–montmorillonite composite. Adsorption experiments were conducted using batch-mode techniques under reducing conditions at ambient temperature. The reaction mechanism indicated a higher proton coefficient, greater intraparticle diffusion, and higher mass transfer rates compared with those achieved with bare montmorillonite. The intraparticle diffusion constant derived from the slope was 2.93^-3 (mg·g^–1·min^–0.5), and the intercept C was 9.86,≠ 0. In the presence of a CuO coating, the adsorption efficiency was 85.55% at pH 4 and 89.62% at pH 7. Therefore, the copper(II) oxide-montmorillonite composite, as a novel adsorbent with a very high adsorption capacity, exhibited substantially enhanced adsorption of Pb^2+ ions compared with bare montmorillonite.
基金the AbbasAbad copper mineShahrood University of Technology for their financial support during this research。
文摘Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
文摘Cu(OH)2 nano-fibers were prepared by chemical precipitation with CuSO4·5H2O and NaOH as raw materials. The Cu(OH)2 nano-fibers have a diameter of 10-30 nm and a length of 1-6 μm. The reaction conditions were as follows: the concentration of CuSO4 solution was 0.1 mol·L^-1,NaOH solution 4 mol·L^-1,the dropping rate of the NaOH solution 50 mL·min^-1,the reaction temperature 20℃the pH value of the reaction terminal 13,and the stirring rate 1200 r·min^-1. The chain nano-CuO grains were obtained through the microwave radiation of the Cu(OH)2 nano-fibers.
文摘A microreactor system and TPD techniques were used to study the reaction kinetics of the CO+ NO reaction and the adsorption of CO,NO,CO_2 and N_2O over Cu-Mn-O(Ⅰ)and Cu-Mn-Ce-O(Ⅱ) catalysts.The results show that the catalytic activity of(Ⅱ)is higher than that of(Ⅰ)for the CO+NO reac- tion,and the higher the conversion of NO,the larger was the activity difference between(Ⅰ)and(Ⅱ).For (Ⅰ)the rate of NO elimination is dependent on the partial pressures of NO,CO,CO_2 with the kinetics or- ders of 0.48,0.56,0.08,respectively.The TPD study shows that the presence of Ce in(Ⅱ)may promote the adsorption of NO,CO on the surface,i.e.an increase of the coverage θ_(NO),θ_(CO),which result in a decrease of the hindrance of the reaction products.For CO_2 and N_2O the situation is in the opposite,the presence of Ce makes the θ_(CO)_2)and θ_(NO)on(Ⅱ)decrease,which weakens the inhibition of CO_2 for the reaction.
基金This work was financially supported by the National Nat-ural Science Foundation for Excellent Youth of China(No.51722401)the State Key Research Development Program of China(No.2016YFC0600704)the Key Program of Na-tional Natural Science Foundation of China(No.51734001).
文摘The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency.In this study,we in-vestigated the effect of the type of binder and mass fraction of the H_(2)SO_(4)solution used on the curing,soaking,and leaching behavior of ag-glomerations.The results revealed that Portland cement(3CaO·SiO_(2),2CaO·SiO_(2),and 3CaO·Al_(2)O_(3))was the optimal binder for obtaining a well-shaped,stable agglomeration structure.A higher extraction rate was achieved when using Portland cement than that obtained using sodi-um silicate,gypsum,or acid-proof cement.An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and desirable porosity.Using computed tomography(CT)and MATLAB,the porosity of two-dimensional CT images in sample concentrations L1-L3 was observed to increase at least 4.5vol%after acid leaching.Ore agglomerations began to be heavily destroyed and even to disinteg-rate when the sulfuric acid solution concentration was higher than 30 g/L,which was caused by the excessive accumulation of reaction products and residuals.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
文摘The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.
基金supported by the National Natural Science Foundation of China (No. 21376163)
文摘E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly alternative be developed. The approach that involves preparing p -benzoquinone by the catalytic oxidation of benzene with hydrogen peroxide (H 2 O 2 ) over copper-modi ed titanium silicalite-1 (Cu/TS-1) has a certain superiority due to its green synthesis and mild reaction condi- tions. In this study, Cu/TS-1 catalyst was prepared by the wet impregnation of TS-1 with an aqueous solution of Cu(NO 3 ) 2 and then characterized by X-ray di raction, Fourier transform infrared spectroscopy, di use re ectance UV Vis spectros- copy, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray uorescence, and analysis of the N 2 adsorption desorption isotherms. The results reveal that Cu species exist mainly in the form of amorphous CuO that is well dispersed on the surface of catalysts, with no major change in the molecular sieve framework. After optimizing the reaction conditions, a desirable p -benzoquinone selectivity (88.4%) and benzene conversion (18.3%) were obtained when the doping of Cu in Cu/TS-1 is 1.95 wt%. In addition, Cu/TS-1 can be conveniently regenerated, showing a slight decrease in catalytic capability after initial use, which then stabilizes in subsequent circulations. The satisfactory stability and low cost of synthesizing Cu/TS-1 give this method considerable potential for further industrialization.